OpenSS7
SS7 for the
Common Man
© Copyright 1997-2007 OpenSS7 Corporation All Rights Reserved.
Last modified: Thu, 30 Nov 2006 15:29:10 GMT
Home Top Index First Prev Next Last More Download Info FAQ Mail  Home -> Documentation -> Manuals -> strcompat Manual
Quick Links

Download

SCTP

SIGTRAN

SS7

Hardware

STREAMS

Asterisk

Related

Package

Manual

Manual Pages

Status

FAQ

Manuals

sctp Manual

iperf Manual

SPG Manual

STREAMS Manual

strcompat Manual

strutil Manual

strbcm Manual

strtty Manual

strxns Manual

strxnet Manual

strsock Manual

strinet Manual

strsctp Manual

striso Manual

netperf Manual

strchan Manual

strx25 Manual

strisdn Manual

strss7 Manual

sigtran Manual

strvoip Manual

osr61 Manual

LiS Manual

Documentation

FAQ

SIGTRAN

Design

Conformance

Performance

References

Man Pages

Manuals

Papers

Home

Overview

Status

Documentation

Resources

About

News

strcompat Manual

Description: OpenSS7 Online Manuals

A PDF version of this document is available here.

OpenSS7 STREAMS Compatibility

OpenSS7 STREAMS Compatibility Installation and Reference Manual

About This Manual

This is Edition 7, last updated 2008-10-31, of The OpenSS7 STREAMS Compatibility Installation and Reference Manual, for Version 0.9.2 release 7 of the OpenSS7 STREAMS Compatibility package.

Preface

Notice

This package is released and distributed under the AGPL (see GNU Affero General Public License). Please note, however, that there are different licensing terms for the manual pages and some of the documentation (derived from OpenGroup1 publications and other sources). Consult the permission notices contained in the documentation for more information.

This manual is released under the FDL (see GNU Free Documentation License) with no sections invariant.

Abstract

This manual provides a Installation and Reference Manual for OpenSS7 STREAMS Compatibility.

Objective

The objective of this manual is to provide a guide for the STREAMS programmer when developing STREAMS modules, drivers and application programs for OpenSS7 STREAMS Compatibility.

This guide provides information to developers on the use of the STREAMS mechanism at user and kernel levels.

STREAMS was incorporated in UNIX System V Release 3 to augment the character input/output (I/O) mechanism and to support development of communication services.

STREAMS provides developers with integral functions, a set of utility routines, and facilities that expedite software design and implementation.

Intent

The intent of this manual is to act as an introductory guide to the STREAMS programmer. It is intended to be read alone and is not intended to replace or supplement the OpenSS7 STREAMS Compatibility manual pages. For a reference for writing code, the manual pages (see STREAMS(9)) provide a better reference to the programmer. Although this describes the features of the OpenSS7 STREAMS Compatibility package, OpenSS7 Corporation is under no obligation to provide any software, system or feature listed herein.

Audience

This manual is intended for a highly technical audience. The reader should already be familiar with Linux kernel programming, the Linux file system, character devices, driver input and output, interrupts, software interrupt handling, scheduling, process contexts, multiprocessor locks, etc.

The guide is intended for network and systems programmers, who use the STREAMS mechanism at user and kernel levels for Linux and UNIX system communication services.

Readers of the guide are expected to possess prior knowledge of the Linux and UNIX system, programming, networking, and data communication.

Revisions

Take care that you are working with a current version of this manual: you will not be notified of updates. To ensure that you are working with a current version, contact the Author, or check The OpenSS7 Project website for a current version.

A current version of this manual is normally distributed with the OpenSS7 STREAMS Compatibility package.

Version Control

     strcompat.texi,v
     Revision 0.9.2.21  2008-09-20 11:04:34  brian
     - added package patchlevel
     
     Revision 0.9.2.20  2008-08-03 06:03:35  brian
     - protected agains texinfo commands in log entries
     
     Revision 0.9.2.19  2008/07/27 08:49:06  brian
     - no invariant sections, more libtool ignores
     
     Revision 0.9.2.18  2008-04-28 16:47:06  brian
     - updates for release
     
     Revision 0.9.2.17  2008-04-25 11:50:49  brian
     - updates to AGPLv3
     
     Revision 0.9.2.16  2007/08/12 06:44:20  brian
     - updated licenses in manuals
     
     Revision 0.9.2.15  2007/02/28 06:30:45  brian
     - updates and corrections, #ifdef instead of #if
     
     Revision 0.9.2.14  2007/01/03 14:57:17  brian
     - documentation updates for release
     
     Revision 0.9.2.13  2006/12/29 12:18:28  brian
     - old rpms hate nested ifs, release updates
     
     Revision 0.9.2.12  2006/10/21 10:01:12  brian
     - updated streams release number
     
     Revision 0.9.2.11  2006/09/18 01:06:34  brian
     - updated manuals and release texi docs
     
     Revision 0.9.2.10  2006/08/28 10:46:56  brian
     - correction
     
     Revision 0.9.2.9  2006/08/28 10:32:53  brian
     - updated references
     
     Revision 0.9.2.8  2006/08/27 12:26:42  brian
     - finalizing auto release files
     
     Revision 0.9.2.7  2006/08/26 09:17:54  brian
     - better release file generation
     
     Revision 0.9.2.6  2006/08/23 11:00:32  brian
     - added preface, corrections and updates for release
     
     Revision 0.9.2.5  2006/08/22 12:57:09  brian
     - updated documentation
     
     Revision 0.9.2.4  2006/03/22 10:02:03  brian
     - added makefile target index
     
     Revision 0.9.2.3  2006/03/03 11:11:14  brian
     - 64-bit compatibility, fixes, updates for release
     
     Revision 0.9.2.2  2005/07/08 13:15:59  brian
     - updates to documentation
     
     Revision 0.9.2.1  2005/07/04 19:28:53  brian
     - first cut at streams compatibility package
     
     Revision 0.9  2005/07/04 19:28:53  brian
     file strcompat.texi was initially added on branch OpenSS7-0_9_2.

ISO 9000 Compliance

Only the TeX, texinfo, or roff source for this manual is controlled. An opaque (printed, postscript or portable document format) version of this manual is an UNCONTROLLED VERSION.

Disclaimer

OpenSS7 Corporation disclaims all warranties with regard to this documentation including all implied warranties of merchantability, fitness for a particular purpose, non-infringement, or title; that the contents of the manual are suitable for any purpose, or that the implementation of such contents will not infringe on any third party patents, copyrights, trademarks or other rights. In no event shall OpenSS7 Corporation be liable for any direct, indirect, special or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with any use of this manual or the performance or implementation of the contents thereof.

OpenSS7 Corporation reserves the right to revise this software and documentation for any reason, including but not limited to, conformity with standards promulgated by various agencies, utilization of advances in the state of the technical arts, or the reflection of changes in the design of any techniques, or procedures embodied, described, or referred to herein. OpenSS7 Corporation is under no obligation to provide any feature listed herein.

U.S. Government Restricted Rights

If you are licensing this Software on behalf of the U.S. Government ("Government"), the following provisions apply to you. If the Software is supplied by the Department of Defense ("DoD"), it is classified as "Commercial Computer Software" under paragraph 252.227-7014 of the DoD Supplement to the Federal Acquisition Regulations ("DFARS") (or any successor regulations) and the Government is acquiring only the license rights granted herein (the license rights customarily provided to non-Government users). If the Software is supplied to any unit or agency of the Government other than DoD, it is classified as "Restricted Computer Software" and the Government's rights in the Software are defined in paragraph 52.227-19 of the Federal Acquisition Regulations ("FAR") (or any successor regulations) or, in the cases of NASA, in paragraph 18.52.227-86 of the NASA Supplement to the FAR (or any successor regulations).

Acknowledgements

As with most open source projects, this project would not have been possible without the valiant efforts and productive software of the Free Software Foundation and the Linux Kernel Community.

Sponsors

Funding for completion of the OpenSS7 OpenSS7 STREAMS Compatibility package was provided in part by:

OpenSS7 Corporation

Additional funding for The OpenSS7 Project was provided by:

OpenSS7 Corporation
Lockheed Martin Co.
Motorola
HOB International
Comverse Ltd.
Sonus Networks Inc.
France Telecom
SS8 Networks Inc.
Nortel Networks
Verisign
eServGlobal (NZ) Pty Ltd.
NetCentrex S. A.
SysMaster Corporation
GeoLink SA
AirNet Communications
TECORE
Tumsan Oy
Vodare Ltd.
Excel Telecommunications

Contributors

The primary contributor to the OpenSS7 OpenSS7 STREAMS Compatibility package is Brian F. G. Bidulock. The following is a list of significant contributors to The OpenSS7 Project:

− Per Berquist
− John Boyd
− Chuck Winters
− Peter Courtney
− Tom Chandler
− Gurol Ackman
− Kutluk Testicioglu
− John Wenker
− Others

Authors

The authors of the OpenSS7 OpenSS7 STREAMS Compatibility package include:

Brian Bidulock

See Author Index, for a complete listing and cross-index of authors to sections of this manual.

Maintainer

The maintainer of the OpenSS7 OpenSS7 STREAMS Compatibility package is:

Brian Bidulock

Please send bug reports to bugs@openss7.org using the send-pr script included in the package, only after reading the BUGS file in the release, or See Problem Reports.

Web Resources

The OpenSS7 Project provides a website dedicated to the software packages released by the OpenSS7 Project.

Bug Reports

Please send bug reports to bugs@openss7.org using the send-pr script included in the OpenSS7 STREAMS Compatibility package, only after reading the BUGS file in the release, or See Problem Reports. You can access the OpenSS7 GNATS database directly via the web, however, the preferred method for sending new bug reports is via mail with the send-pr script.

Mailing Lists

The OpenSS7 Project provides a number of general discussion Mailing Lists for discussion concerning the OpenSS7 OpenSS7 STREAMS Compatibility package as well as other packages released by The OpenSS7 Project.

These are mailman mailing lists and so have convenient web interfaces for subscribers to control their settings. See http://www.openss7.org/mailinglist.html.

The mailing lists are as follows:

openss7
The openss7 mailing list is for general enquiries, information exchange and announcements regarding the OpenSS7 Project. This is our original mailing list and takes the highest amount of traffic.
openss7-announce
The openss7-announce mailing list is for announcements related to the OpenSS7 Project. This list will accept announcements posted by subscribers. Subscribe to this list if you are interested in announcements from the OpenSS7 Project, subscribers and sponsors, related to the OpenSS7 Project or STREAMS, SS7, SIGTRAN or SCTP in general.
openss7-cvs
The openss7-cvs mailing list is for automatic CVS log reporting. You must get permission of the owner to subscribe to this list. Subscribers are not allowed to post to this list, this is merely for distributing notification of changes to the CVS repository.h
openss7-develop
The openss7-develop mailing list is for email exchange related to the development projects under the OpenSS7 Project. This includes development requests, proposals, requests for comment or proposal. Subscribe to this list if you are interested in ongoing development details regarding the OpenSS7 Project.
openss7-test
The openss7-test mailing list is for email exchange related to the testing of code under the OpenSS7 Project. This specifically relates to conformance testing, verification testing, interoperability testing and beta testing. Subscribe to this list if you are interested in participating in and receiving ongoing details of test activities under the OpenSS7 Project.
openss7-bugs
The openss7-bugs mailing list is specifically tailored to bug tracking. The mailing list takes a feed from the OpenSS7 GNATS bug tracking system and accepts posting of responses to bug reports, tracking and resolution. Subscribe to this list if you are interested in receiving detailed OpenSS7 release code bug tracking information. This list is not archived; for historical information on problem reports, see our GNATS databases.
openss7-updates
The openss7-updates mailing list provides updates on OpenSS7 Project code releases and ongoing activities. Subscribers are not allowed to post to this list; this list is for official OpenSS7 Project announcements only. Subscribe to this list if you are interested in receiving updates concerning official releases and activities of the OpenSS7 Project.
openss7-streams
The openss7-streams mailing list is for email exchange related to the STREAMS development projects under the OpenSS7 Project. This includes development requests, proposals, requests for comment or proposal. Subscribe to this list if you are interested in ongoing development details regarding the OpenSS7 Project STREAMS components.
linux-streams
The linux-streams mailing list is for mail exchange related to Linux Fast-STREAMS or Linux STREAMS. This includes patches, development requests, proposals, requests for comment or proposal. Subscribe to this list if you are interested in ongoing development details regarding the STREAMS for Linux components. This is the the new (September 2006) home of the linux-streams list formerly of <gsyc.escet.urjc.es>.
Spam

To avoid spam being sent to the members of the OpenSS7 mailing list(s), we have blocked mail from non-subscribers. Please subscribe to the mailing list before attempting to post to them. (Attempts to post when not subscribed get bounced.)

As an additional measure against spam, subscriber lists for all OpenSS7 mailing lists are not accessible to non-subscribers; for most lists subscriber lists are only accessible to the list administrator. This keeps your mailing address from being picked off our website by bulk mailers.

Acceptable Use Policy

It is acceptable to post professional and courteous messages regarding the OpenSS7 package or any general information or questions concerning STREAMS, SS7, SIGTRAN, SCTP or telecommunications applications in general.

Large Attachments

The mailing list is blocked from messages of greater than 40k. If you have attachments (patches, test programs, etc.) and you mail them to the list, it will bounce to the list administrator. If you are interested in making your patches, test programs, test results or other large attachments available to the members of the mailing list, state in the message that you would like them posted and the list administrator will place them in the mail archives.

Quick Start Guide

OpenSS7 STREAMS Compatibility

Package strcompat-0.9.2.7 was released under AGPLv3 2008-10-31.

The OpenSS7 STREAMS Compatibility package provides the ability for Linux Fast-STREAMS to exhibit source level compatibility with a wide range of UNIX STREAMS implementations. Also, it provides LiS source, and some 2.18.0 binary, compatibility for Linux Fast-STREAMS. The objective of the package is to provide source level compatibility with a wide range of UNIX STREAMS implementations permitting drivers and modules to port easily to Linux Fast-STREAMS from any other STREAMS implementation, making it possible to release drivers and modules from a single UNIX code base with minimal localisms for Linux.

These compatibility modules provide source level compatibility with AIX, HPUX, OSF/1, MacOT, Mentat, SUX, Solaris, SUPER/UX, IRIX, LiS, UnixWare, UXP/V and SVR 4.2 STREAMS. The package contains all the necessary manual pages and other documentation in an autoconf tarball.

The package currently includes the following STREAMS kernel modules and drivers:2

streams_os7compat.ko kernel
streams_svr3compat.ko kernel
streams_svr4compat.ko kernel
streams_mpscompat.ko kernel
streams_suncompat.ko kernel
streams_uw7compat.ko kernel
streams_osfcompat.ko kernel
streams_aixcompat.ko kernel
streams_hpuxcompat.ko kernel
streams_irixcompat.ko kernel
streams_liscompat.ko kernel
streams_lfscompat.ko kernel
streams_maccompat.ko kernel

The OpenSS7 STREAMS Compatibility package provides compatibility with the following STREAMS implementations:

OpenSS7 variants
UNIX® System V Release 3.2
UNIX® System V Release 4.2
MPS® Mentat Portable Streams
Solaris® 9/SunOS® 5.9
UnixWare® 7.1.3
Digital® UNIX (OSF/1.2)
AIX® 5L Version 5.1 Portable STREAMS Environment
HP-UX® 11.0i v2 STREAMS/UX
IRIX® 6.5.17
Linux STREAMS 2.18.0
Linux Fast-STREAMS 0.9.2
Mac® OS 9 Open Transport

These compatibility modules compile as kernel modules and will be demand loaded into the kernel when used by a specific STREAMS module or driver. The compatibility modules ease porting of STREAMS modules and drivers from other Operating Systems to Linux.

This distribution is only currently applicable to Linux 2.4 and 2.6 kernels and was targeted at ix86, x86_64, ppc and ppc64 architectures, but should build and install for other architectures as well.

Release

This is the strcompat-0.9.2.7 package, released 2008-10-31. This ‘0.9.2.7’ release, and the latest version, can be obtained from the download area of The OpenSS7 Project website using a command such as:

     $> wget http://www.openss7.org/tarballs/strcompat-0.9.2.7.tar.bz2

The release is available as an autoconf(1) tarball, src.rpm or dsc, as a set of binary rpms or debs, or as a yum(8) or apt(8) repository. See the download page for the autoconf(1) tarballs, src.rpms, dscs, or repository access instructions. See the strcompat package page for tarballs, source and binary packages.

Please see the NEWS file for release notes and history of user visible changes for the current version, and the ChangeLog file for a more detailed history of implementation changes. The TODO file lists features not yet implemented and other outstanding items.

Please see the INSTALL, INSTALL-strcompat and README-make, files (or see Installation) for installation instructions.

When working from cvs(1) or git(1), please see the README-cvs, file (or see Downloading from CVS). An abbreviated installation procedure that works for most applications appears below.

This release of the package is published strictly under Version 3 of the GNU Affero Public License which can be found in the file COPYING. Package specific licensing terms (if any) can be found in the file LICENSES. Please respect these licensing arrangements. If you are interested in different licensing terms, please contact the copyright holder, or OpenSS7 Corporation <sales@openss7.com>.

See README-alpha (if it exists) for alpha release information.

Prerequisites

The quickest and easiest way to ensure that all prerequisites are met is to download and install this package from within the OpenSS7 Master Package, openss7-0.9.2.G, instead of separately.

Prerequisites for the OpenSS7 STREAMS Compatibility package are as follows:

  1. Linux distribution, somewhat Linux Standards Base compliant, with a 2.4 or 2.6 kernel and the appropriate tool chain for compiling out-of-tree kernel modules. Most recent Linux distributions are usable out of the box, but some development packages must be installed. For more information, see Compatibility.

    − A fairly LSB compliant GNU/Linux distribution.3
    − Linux 2.4 kernel (2.4.10 - 2.4.27), or
    − Linux 2.6 kernel (2.6.3 - 2.6.26);
    − glibc2 or better.
    − GNU groff (for man pages).4
    − GNU texinfo (for info files).
    − GNU bison and flex (for config programs).
    − net-snmp (for SNMP agents).5

(Note: If you acquired strcompat a part of the OpenSS7 Master Package, then the dependencies listed below will already have been met by unpacking the master package.)

  1. OpenSS7 Linux Fast-STREAMS, streams-0.9.2.4. 6

When configuring and building multiple OpenSS7 Project release packages, place all of the source packages (unpacked tarballs) at the same directory level and all build directories at the same directory level (e.g. all source packages under /usr/src).

When installing packages that install as kernel modules, it is necessary to have the correct kernel development package installed. For the following distributions, use the following commands:

     Ubuntu:  $> apt-get install linux-headers
     Debian:  $> apt-get install kernel-headers
     Fedora:  $> yum install kernel-devel

You also need the same version of gcc(1) compiler with which the kernel was built. If it is not the default, add ‘CC=kgcc’ on the line after ‘./configure’, for example:

     $> ../strcompat-0.9.2.7/configure CC='gcc-3.4'

Installation

The following commands will download, configure, build, check, install, validate, uninstall and remove the package:

     $> wget http://www.openss7.org/tarballs/strcompat-0.9.2.7.tar.bz2
     $> tar -xjvf strcompat-0.9.2.7.tar.bz2
     $> mkdir build
     $> pushd build
     $> ../strcompat-0.9.2.7/configure --enable-autotest
     $> make
     $> make check
     $> sudo make install
     $> sudo make installcheck
     $> sudo make uninstall
     $> popd
     $> sudo rm -rf build
     $> rm -rf strcompat-0.9.2.7
     $> rm -f strcompat-0.9.2.7.tar.bz2

If you have problems, try building with the logging targets instead. If the make of a logging target fails, an automatic problem report will be generated that can be mailed to The OpenSS7 Project.7 Installation steps using the logging targets proceed as follows:

     $> wget http://www.openss7.org/tarballs/strcompat-0.9.2.7.tar.bz2
     $> tar -xjvf strcompat-0.9.2.7.tar.bz2
     $> mkdir build
     $> pushd build
     $> ../strcompat-0.9.2.7/configure --enable-autotest
     $> make compile.log
     $> make check.log
     $> sudo make install.log
     $> sudo make installcheck.log
     $> sudo make uninstall.log
     $> popd
     $> sudo rm -rf build
     $> rm -rf strcompat-0.9.2.7
     $> rm -f strcompat-0.9.2.7.tar.bz2

See README-make for additional specialized make targets.

For custom applications, see the INSTALL and INSTALL-strcompat files or the see Installation, as listed below. If you encounter troubles, see Troubleshooting, before issuing a bug report.

Brief Installation Instructions

The OpenSS7 STREAMS Compatibility package is available from the downloads area of The OpenSS7 Project website using a command such as:

     $> wget http://www.openss7.org/tarballs/strcompat-0.9.2.7.tar.bz2

Unpack the tarball using a command such as:

     $> tar -xjvf strcompat-0.9.2.7.tar.bz2

The tarball will unpack into the relative subdirectory named after the package name: strcompat-0.9.2.7.

The package builds using the GNU autoconf utilities and the configure script. To build the package, we recommend using a separate build directory as follows:

     $> mkdir build
     $> cd build
     $> ../strcompat-0.9.2.7/configure

In general, the package configures and builds without adding any special options to the configure script. For general options to the configure script, see the GNU INSTALL file in the distribution:

     $> less ../strcompat-0.9.2.7/INSTALL

For specific options to the configure script, see the INSTALL-strcompat file in the distribution, or simply execute the configure script with the --help option like so:

     $> ../strcompat-0.9.2.7/configure --help

After configuring the package, the package can be compiled simply by issuing the ‘make’ command:

     $> make

Some specialized makefile targets exists, see the README-make file in the distribution or simply invoke the ‘help’ target like so:

     $> make help | less

After successfully building the package, the package can be checked by invoking the ‘check’ make target like so:

     $> make check

After successfully checking the package, the package can be installed by invoking the ‘install’ make target (as root) like so:

     $> sudo make install

The test suites that ship with the package can be invoked after the package has been installed by invoking the ‘installcheck’ target. This target can either be invoked as root, or as a normal user, like so:

     $> make installcheck

(Note: you must add the --enable-autotest flag to configure, above for the test suites to be invoked with ‘make installcheck’.)

The package can be cleanly removed by invoking the ‘uninstall’ target (as root):

     $> sudo make uninstall

Then the build directory and tarball can be simply removed:

     $> cd ..
     $> rm -rf build
     $> rm -rf strcompat-0.9.2.7
     $> rm -f strcompat-0.9.2.7.tar.bz2

Detailed Installation Instructions

More detailed installation instructions can be found in the Installation, contained in the distribution in ‘text’, ‘info’, ‘html’ and ‘pdf’ formats:

     $> cd ../strcompat-0.9.2.7
     $> less doc/manual/strcompat.txt
     $> lynx doc/manual/strcompat.html
     $> info doc/manual/strcompat.info
     $> xpdf doc/manual/strcompat.pdf

The ‘text’ version of the manual is always available in the MANUAL file in the release.

The current manual is also always available online from The OpenSS7 Project website at:

     $> lynx http://www.openss7.org/strcompat_manual.html

1 Introduction

This manual documents the design, implementation, installation, operation and future development schedule of the OpenSS7 STREAMS Compatibility package.

1.1 Overview

This manual documents the design, implementation, installation, operation and future development of the OpenSS7 STREAMS Compatibility package.

1.2 Organization of this Manual

This manual is organized (loosely) into several sections as follows:

Introduction. This introduction
Objective. Objective of the package
Reference. Contents of the package
Porting. Porting to this package
Conformance. Conformance of the package
Releases. Releases of the package
Installation. Installation of the package
Troubleshooting. Troubleshooting of the package

1.3 Conventions and Definitions

This manual uses texinfo typographic conventions.

2 Objective

The OpenSS7 STREAMS Compatibility package is intended to provide maximum compatibility between Linux STREAMS (LiS) or Linux Fast-STREAMS (LfS) and other STREAMS implementations on major UNIX operating systems, for the purpose of porting existing STREAMS modules and drivers from those operating system to Linux.

Also, the OpenSS7 STREAMS Compatibility package aims to provide compatibility between Linux STREAMS (LiS) and Linux Fast-STREAMS to ease the porting of STREAMS modules and drivers from LiS to Linux Fast-STREAMS with minimal effort.

To meet that objective, OpenSS7 STREAMS Compatibility aims to support the STREAMS DDI/DKI and registration functions of the following STREAMS implementations:


     
  • UNIX System V Release 3.2
  • UNIX System V Release 4 MP
  • UNIX System V Release 4.0 MP
  • UNIX System V Release 4.2 MP
  • Mentat Portable Streams (MPS)
  • Linux STREAMS LiS 2.16
  • Linux STREAMS LiS 2.18
  • Linux Fast-STREAMS 0.7a
  • Linux Fast-STREAMS 0.9.2
  • AIX 5L Version 5.1 Portable STREAMS Environment (PSE)
  • HP-UX 11.0i v2 STREAMS/UX
  • OSF/1.2 - Digital UNIX STREAMS
  • UnixWare 7.1.3 (OpenUnix 8) STREAMS
  • Solaris 9/SunOS 5.9 (OpenSolaris) STREAMS
  • Mac OS 9 OpenTransport 1.5r2
  • IRIX 6.5.17 STREAMS
  • SUPER-UX Release 9.2
  • UXP/V V10L10 STREAMS V10

Because it is not necessary to have all of these compatibility modules loaded at a given time, and
to reduce the footprint of the resulting kernel modules, the OpenSS7 STREAMS Compatibility package
implements these compatibility modules as separate demand loadable Linux kernel modules.

   

The OpenSS7 STREAMS Compatibility package contains compatibility modules that were originally part of the Linux Fast-STREAMS package. They have been separated into an package independent from Linux Fast-STREAMS for the purpose of provide some of the same capabilities to Linux STREAMS (LiS) in advance of production releases of Linux Fast-STREAMS.

2.1 Rationale

The OpenSS7 STREAMS Compatibility package is designed and implemented to be compatible with as many SVR 4.2 MP based implementations of STREAMSa s possible. This is done for several reasons:

  1. Porting legacy drivers to Linux:

    Many legacy STREAMS drivers have been written and developed for SVR 4.2 MP or UNIX systems based on SVR 4.2 MP. Remaining compatible with as many implementations as possible permits these legacy drivers to be easily ported from their native UNIX variant to the Linux Fast-STREAMS environment, thus quickly porting these legacy drivers to Linux.

  2. Leverage of knowledge base:

    Many developers are familiar with one or another of the mainstream UNIX implementations of SVR 4.2 MP STREAMS. By remaining as compatible as possible with all these implementations of STREAMS permits knowledge and expertise in the UNIX variant of STREAMS to be transferred and applied to Linux Fast-STREAMS on Linux.

  3. Reverse portability:

    Because it is compatible as possible with other STREAMS implementations, STREAMS drivers and modules developed on Linux Fast-STREAMS can easily be ported to other implementations if a set of compatibility and portability guidelines are followed. This allows STREAMS driver and modules developed on the Linux operating system to be used on branded UNIX systems with minimal porting and modification.

  4. Multiple baselines:

    Because the source code developed for Linux Fast-STREAMS can remain quite close to that for other mainstream UNIX implementations of SVR 4.2 MP STREAMS, it is possible to have multiple baselines for different architectures in the same source code files. This eases the maintenance of STREAMS drivers and modules across Linux Fast-STREAMS and other UNIX systems.

  5. Standardization:

    By being as compatible as possible with many STREAMS implementations as possible, Linux Fast-STREAMS implements an ipso facto standard. Unfortunately, the OpenGroup and POSIX have been very lacking in the standardization of internal kernel interfaces such as STREAMS. Maximum compatibility moves close to providing a standard for such interfaces.

  6. Licensing and Technology Binding

    By implementing an ipso facto standard, independent STREAMS drivers and modules written to the technical interface avoid being impinged upon by the GNU Affero Public License under which Linux STREAMS and Linux Fast-STREAMS are distributed.

2.2 Use with Linux STREAMS

The OpenSS7 STREAMS Compatibility package was originally part of the Linux Fast-STREAMS base package, streams. The purpose for separating the package was originally to support both LiS and Linux Fast-STREAMS until such time as Linux Fast-STREAMS was a suitable production replacement for LiS. With release streams-0.9.2.4, Linux Fast-STREAMS is a far superior production replacement for LiS and LiS is now deprecated. Although, at one time, the OpenSS7 STREAMS Compatibility package worked with LiS, it is no longer supported on LiS and is only tested and validated for Linux Fast-STREAMS. Even when it was supported, LiS has so many bugs, deficiencies and incompatibilities in the Stream head, that it was not possible to obtain usable compatibility in conjunction with LiS. Linux Fast-STREAMS does not have these problems.

2.3 Use with Linux Fast-STREAMS

The OpenSS7 STREAMS Compatibility package functions much better with the Linux Fast-STREAMS implementation with which it was originally intended to function. Linux Fast-STREAMS provides a superset of the capabilities of SVR 4.2 MP intended to provide compatibility across as many mainstream UNIX implementations of STREAMS as possible. Also, Linux Fast-STREAMS does not have the bugs, races, deficiencies, and other difficulties present in the LiS package.8

3 Reference

3.1 Files

The following sections provide a manifest of the files that are installed by the OpenSS7 STREAMS Compatibility package:

STRCOMPAT creates the following kernel modules files in the kernel modules directory, /lib/modules/2.4.20-28.7/:9

modules.strcompat

STRCOMPAT installs the following kernel module files in the kernel modules directory, /lib/modules/2.4.20-28.7/strcompat/:10

streams_os7compat.ko
OpenSS7 compatibility module.
streams_svr3compat.ko
SVR 3 compatibility module.
streams_svr4compat.ko
SVR 4.2 MP compatibility module.
streams_mpscompat.ko
MPS compatibility module.
streams_suncompat.ko
Solaris compatibility module.
streams_uw7compat.ko
UnixWare compatibility module.
streams_osfcompat.ko
OSF/1 compatibility module.
streams_aixcompat.ko
AIX compatibility module.
streams_hpuxcompat.ko
HP-UX compatibility module.
streams_irixcompat.ko
IRIX compatibility module.
streams_liscompat.ko
LiS compatibility module.
streams_maccompat.ko
Mac OT compatibility module.

STRCOMPAT installs the following header files in the system include directory, /usr/include/strcompat/:

sys/strcompat/config.h
Contains configuration defines for the strcompat package.
sys/strcompat/version.h
Contains module versions (on 2.4 kernels) for the strcompat package.
sys/os7/allocb.h
Contains declarations of OpenSS7 buffer allocation helper functions.
sys/os7/bufpool.h
Contains declarations of OpenSS7 buffer pool helper functions.
sys/os7/bufq.h
Contains declarations of OpenSS7 private buffer queue helper functions.
sys/os7/compat.h
Contains declarations of OpenSS7 compatibility defines and includes. This is the only header file that needs to be included for a STREAMS module or driver that needs to be compatible with both LiS and Linux Fast-STREAMS.
sys/os7/debug.h
Contains declarations of OpenSS7 debugging macros.
sys/os7/lock.h
Contains declarations of OpenSS7 queue locking helper functions.
sys/os7/priv.h
Contains declarations of OpenSS7 queue private structure helper functions.
sys/os7/queue.h
Contains declarations of OpenSS7 queue put and service procedure helper functions.
sys/os7/timer.h
Contains declarations of OpenSS7 timer helper functions.
sys/os7/ddi.h
Contains declarations of OpenSS7 additional helper functions.
sys/os7/strconf.h
Contains declarations of OpenSS7 STREAMS configuration helper functions.
sys/os7/stream.h
Contains declarations of OpenSS7 STREAMS helper functions.
sys/stream.h
Contains a main header file providing STREAMS utility function declarations. Depending on defines when including this file, this file may include stream.h files for specific implementations.
sys/strconf.h
Contains a main header file providing STREAMS configuration function declarations. Depending on defines when including this file, this file may include stream.h files for specific implementations.
sys/ddi.h
Contains a main header file providing STREAMS DDI/DKI function declarations. Depending on defines when including this file, this file may include stream.h files for specific implementations.
sys/aix/stream.h
Contains declarations of STREAMS functions unique to AIX.
sys/aix/strconf.h
Contains declarations of STREAMS configuration functions unique to AIX.
sys/aix/ddi.h
Contains declarations of STREAMS DDI/DKI functions unique to AIX.
sys/hpux/stream.h
Contains declarations of STREAMS functions unique to HP-UX.
sys/hpux/strconf.h
Contains declarations of STREAMS configuration functions unique to HP-UX.
sys/hpux/ddi.h
Contains declarations of STREAMS DDI/DKI functions unique to HP-UX.
sys/irix/stream.h
Contains declarations of STREAMS functions unique to IRIX.
sys/irix/strconf.h
Contains declarations of STREAMS configuration functions unique to IRIX.
sys/irix/ddi.h
Contains declarations of STREAMS DDI/DKI functions unique to IRIX.
sys/lis/stream.h
Contains declarations of STREAMS functions unique to LiS.
sys/lis/strconf.h
Contains declarations of STREAMS configuration functions unique to LiS.
sys/lis/ddi.h
Contains declarations of STREAMS DDI/DKI functions unique to LiS.
sys/mac/stream.h
Contains declarations of STREAMS functions unique to Mac OT.
sys/mac/strconf.h
Contains declarations of STREAMS configuration functions unique to Mac OT.
sys/mac/ddi.h
Contains declarations of STREAMS DDI/DKI functions unique to Mac OT.
sys/mps/stream.h
Contains declarations of STREAMS functions unique to MPS.
sys/mps/strconf.h
Contains declarations of STREAMS configuration functions unique to MPS.
sys/mps/ddi.h
Contains declarations of STREAMS DDI/DKI functions unique to MPS.
sys/osf/stream.h
Contains declarations of STREAMS functions unique to OSF/1.
sys/osf/strconf.h
Contains declarations of STREAMS configuration functions unique to OSF/1.
sys/osf/ddi.h
Contains declarations of STREAMS DDI/DKI functions unique to OSF/1.
sys/sun/stream.h
Contains declarations of STREAMS functions unique to Solaris.
sys/sun/strconf.h
Contains declarations of STREAMS configuration functions unique to Solaris.
sys/sun/ddi.h
Contains declarations of STREAMS DDI/DKI functions unique to Solaris.
sys/sun/strsun.h
Contains specific declarations for Solaris helper functions.
sys/sunddi.h
Main header file used to include Solaris DDI/DKI function declarations.
sys/strsun.h
Main header file used to include Solaris Solaris function declarations.
sys/svr3/stream.h
Contains declarations of STREAMS functions unique to SVR 3.
sys/svr3/strconf.h
Contains declarations of STREAMS configuration functions unique to SVR 3.
sys/svr3/ddi.h
Contains declarations of STREAMS DDI/DKI functions unique to SVR 3.
sys/svr4/stream.h
Contains declarations of STREAMS functions unique to SVR 4.2 MP.
sys/svr4/strconf.h
Contains declarations of STREAMS configuration functions unique to SVR 4.2 MP.
sys/svr4/ddi.h
Contains declarations of STREAMS DDI/DKI functions unique to SVR 4.2 MP.
sys/uw7/stream.h
Contains declarations of STREAMS functions unique to UnixWare.
sys/uw7/strconf.h
Contains declarations of STREAMS configuration functions unique to UnixWare.
sys/uw7/ddi.h
Contains declarations of STREAMS DDI/DKI functions unique to UnixWare.

STRCOMPAT installs the following test programs in the system libexec directory, /usr/libexec/strcompat/:11

send-pr
send-pr.config
The send-pr stand-alone shell script can be used for the automatic generation of problem reports for the OpenSS7 STREAMS Compatibility package. The send-pr.config file provides localized definitions used by the send-pr program. For more information on problem reports, See Problem Reports, and, in particular, See Stand Alone Problem Reports.
testsuite
atlocal
The testsuite stand-alone shell script invokes test cases in the test programs above as compiled into a comprehensive regression, troubleshooting and validation test suite for the OpenSS7 STREAMS Compatibility drivers. The atlocal file provides localized definitions used by the testsuite program. For more information on test suites, See Test Suites, and, in particular, See Running Test Suites.

STRCOMPAT installs the following init scripts in the system init directory, /etc/rc.d/init.d/ (non-Debian) or /etc/init.d/ (Debian):

strcompat
This is the name of the system init script on non-Debian based systems.
strcompat.sh
This is the name of the system init script on Debian based systems.

STRCOMPAT installs the following system configuration files in the configuration directory, /etc/:

strcompat.conf
This file provided configuration information for any system controls affected by the ‘strcompat’ package.
modutils/strcompat
This file provides module definitions and demand loading aliases for the strcompat package. This file is really only applicable to older 2.4 kernels.

STRCOMPAT installs the following system configuration file in the system configuration directory, /etc/sysconfig/ (non-Debian) or /etc/default/ (Debian):

strcompat
This file provides system configuration information used by init scripts for the ‘strcompat’ package. Some options of init script execution can be controlled by this file.

STRCOMPAT installs the following info files in the system info directory, /usr/share/info/:

strcompat.info
strcompat.info-1
strcompat.info-2
These files contain this manual in GNU info format.

STRCOMPAT installs the following manual page macros and reference database files in the system man directory, /usr/share/man/:12

strcompat.macros
This file contains manual page macro definitions included by the manual pages included in the package.
strcompat.refs
This file contains a reference database referenced by the manual pages included in the package.

STRCOMPAT installs the following manual pages in the system man directory, /usr/share/man/man5/:

strcompat.5
manual page for the strcompat(5) package.

STRCOMPAT installs the following manual pages in the system man directory, /usr/share/man/man8/:

strcompat_mknod.8
Documentation for the strcompat_mknod(8) utility program.

STRCOMPAT installs the following manual pages in the system man directory, /usr/share/man/man9/:

The OpenSS7 STREAMS Compatibility package installs several hundred manual pages that are too many to list here. Following are just the primary manual pages. Begin with any of these manual pages to obtain references to the remaining pages.

man9/os7compat.9
os7compat(9)
man9/svr3compat.9
svr3compat(9)
man9/svr4compat.9
svr4compat(9)
man9/mpscompat.9
mpscompat(9)
man9/suncompat.9
suncompat(9)
man9/uw7compat.9
uw7compat(9)
man9/osfcompat.9
osfcompat(9)
man9/aixcompat.9
aixcompat(9)
man9/hpuxcompat.9
hpuxcompat(9)
man9/irixcompat.9
irixcompat(9)
man9/liscompat.9
liscompat(9)
man9/maccompat.9
maccompat(9)

3.2 Drivers

The OpenSS7 STREAMS Compatibility package only includes drivers for the purpose of providing examples of the use of the utility functions included in the package, as well as to provide loadable drivers for the purpose of test suite execution. If you are not interested in test suite execution, these drivers can be removed.

STREAMS drivers included in the package are as follows:

streams_aixdrv.ko
an example driver for testing AIX 5L Version 5.1 Portable STREAMS Environment (PSE) compatibility.
streams_hpuxdrv.ko
an example driver for testing HP-UX 11.0i v2 STREAMS/UX compatibility.
streams_irixdrv.ko
an example driver for testing IRIX 6.5.17 STREAMS compatibility.
streams_lfsdrv.ko
an example driver for testing Linux Fast-STREAMS 0.9.2.4 compatibility.
streams_lisdrv.ko
an example driver for testing Linux STREAMS LiS 2.16 and LiS 2.18 compatibility.
streams_macdrv.ko
an example driver for testing Mac OS 9 OpenTransport 1.5r2 compatibility.
streams_mpsdrv.ko
an example driver for testing Mentat Portable Streams (MPS) compatibility.
streams_osfdrv.ko
an example driver for testing OSF/1.2 - Digital UNIX STREAMS compatibility.
streams_sundrv.ko
an example driver for testing Solaris 9/SunOS 5.9 (OpenSolaris) STREAMS compatibility.
streams_suxdrv.ko
an example driver for testing SUPER-UX Release 9.2 compatibility.
streams_svr3drv.ko
an example driver for testing UNIX System V Release 3.2 compatibility.
streams_svr4drv.ko
an example driver for testing UNIX System V Release 4.2 MP compatibility.
streams_uw7drv.ko
an example driver for testing UnixWare 7.1.3 (OpenUnix 8) STREAMS compatibility.
streams_uxpdrv.ko
an example driver for testing UXP/V V10L10 STREAMS V10 compatibility.

3.3 Modules

The OpenSS7 STREAMS Compatibility package only includes modules for the purpose of providing examples of the use of the utility functions included in the package, as well as to provide loadable modules for the purpose of test suite execution. If you are not interested in test suite execution, these modules can be removed.

STREAMS modules included in the package are as follows:

streams_aixmod.ko
an example module for testing AIX 5L Version 5.1 Portable STREAMS Environment (PSE) compatibility.
streams_hpuxmod.ko
an example module for testing HP-UX 11.0i v2 STREAMS/UX compatibility.
streams_irixmod.ko
an example module for testing IRIX 6.5.17 STREAMS compatibility.
streams_lfsmod.ko
an example module for testing Linux Fast-STREAMS 0.9.2.4 compatibility.
streams_lismod.ko
an example module for testing Linux STREAMS LiS 2.16 and LiS 2.18 compatibility.
streams_macmod.ko
an example module for testing Mac OS 9 OpenTransport 1.5r2 compatibility.
streams_mpsmod.ko
an example module for testing Mentat Portable Streams (MPS) compatibility.
streams_osfmod.ko
an example module for testing OSF/1.2 - Digital UNIX STREAMS compatibility.
streams_sunmod.ko
an example module for testing Solaris 9/SunOS 5.9 (OpenSolaris) STREAMS compatibility.
streams_suxmod.ko
an example module for testing SUPER-UX Release 9.2 compatibility.
streams_svr3mod.ko
an example module for testing UNIX System V Release 3.2 compatibility.
streams_svr4mod.ko
an example module for testing UNIX System V Release 4.2 MP compatibility.
streams_uw7mod.ko
an example module for testing UnixWare 7.1.3 (OpenUnix 8) STREAMS compatibility.
streams_uxpmod.ko
an example module for testing UXP/V V10L10 STREAMS V10 compatibility.

3.4 Libraries

3.5 Utilities

The OpenSS7 STREAMS Compatibility package does not provide any system utilities of its own. For a set of system utilities that are compatible across the same wide range of operating systems, use the OpenSS7 STREAMS Utilities package.

What the OpenSS7 STREAMS Compatibility package does provide is a set of kernel modules that provide compatibility utilities to the STREAMS module or driver developer. These kernel modules are as follows:

streams_aixcompat.ko
STREAMS module writer utilities for AIX 5L Version 5.1 Portable STREAMS Environment (PSE) compatibility.
streams_hpuxcompat.ko
STREAMS module writer utilities for HP-UX 11.0i v2 STREAMS/UX compatibility.
streams_irixcompat.ko
STREAMS module writer utilities for IRIX 6.5.17 STREAMS compatibility.
streams_lfscompat.ko
STREAMS module writer utilities for Linux Fast-STREAMS 0.9.2.4 compatibility.
streams_liscompat.ko
STREAMS module writer utilities for Linux STREAMS LiS 2.16 and LiS 2.18 compatibility.
streams_maccompat.ko
STREAMS module writer utilities for Mac OS 9 OpenTransport 1.5r2 compatibility.
streams_mpscompat.ko
STREAMS module writer utilities for Mentat Portable Streams (MPS) compatibility.
streams_osfcompat.ko
STREAMS module writer utilities for OSF/1.2 - Digital UNIX STREAMS compatibility.
streams_suncompat.ko
STREAMS module writer utilities for Solaris 9/SunOS 5.9 (OpenSolaris) STREAMS compatibility.
streams_suxcompat.ko
STREAMS module writer utilities for SUPER-UX Release 9.2 compatibility.
streams_svr3compat.ko
STREAMS module writer utilities for UNIX System V Release 3.2 compatibility.
streams_svr4compat.ko
STREAMS module writer utilities for UNIX System V Release 4.2 MP compatibility.
streams_uw7compat.ko
STREAMS module writer utilities for UnixWare 7.1.3 (OpenUnix 8) STREAMS compatibility.
streams_uxpcompat.ko
STREAMS module writer utilities for UXP/V V10L10 STREAMS V10 compatibility.

3.5.1 AIX Utilities

3.5.2 HP-UX Utilities

3.5.3 IRIX Utilities

3.5.4 LfS Utilities

3.5.5 LiS Utilities

3.5.6 MacOT Utilities

3.5.7 MPS Utilities

3.5.8 OSF Utilities

3.5.9 Solaris Utilities

3.5.10 SUPER-UX Utilities

3.5.11 SVR3 Utilities

3.5.12 SVR4 Utilities

3.5.13 UnixWare Utilities

3.5.14 UXP/V Utilities

3.6 Development

The OpenSS7 STREAMS Compatibility package contains the necessary header files, shared and static libraries, manuals and manual pages, necessary for the development of kernel modules, STREAMS modules and drivers, and applications programs based on the OpenSS7 STREAMS Compatibility package.

3.6.1 Header Files

Header files are installed, typically, in the /usr/include/strcompat/ subdirectory.13 To use the header files from the package, ‘-I/usr/include/strcompat’ must be included in the gcc command line as a preprocessor option. This is true regardless of whether user space or kernel programs are being compiled.

In general, ‘-I’ include directives on the gcc command line should be ordered in the reverse order of the dependencies between add-on packages. So, for example, if the include files from all add-on packages are required, the order of these directives would be: ‘-I/usr/include/strcompat -I/usr/include/streams’.

Following are the user visible header files provided by the strcompat-0.9.2.7 package in directory /usr/include/strcompat/:

sys/stream.h
A replacement stream.h file
sys/strconf.h
A replacement strconf.h file
sys/ddi.h
A replacement ddi.h file
sys/strsun.h
A replacement strsun.h file
sys/sunddi.h
A replacement sunddi.h file
3.6.1.1 User Space Programs

Typically include files for interacting with STREAMS from user space include the stropts.h header file. Additional files for interacting with specific drivers or module may also be required. The OpenSS7 STREAMS Compatibility package does not provide any user space header files.

3.6.1.2 Kernel Driver and Modules

Typical include files for writing STREAMS modules and drivers for kernel include the sys/cmn_err.h, sys/kmem.h, sys/dki.h, sys/stream.h, sys/ddi.h, and sys/strconf.h header files. Additional header files for interacting with specific drivers or modules may also be required.

3.6.2 Libraries

Shared or static versions of the libstreams library must be linked when using the strcompat-0.9.2.7 package. This library must either be specified on the gcc command line as a shared library (e.g. ‘-lstreams’) or as a static library (e.g. ‘/usr/lib/libstreams.a’).

If the shared library is linked, include the following options on the gcc command line:

If the static library is linked, include the following options on the gcc command line:

3.6.3 Kernel Module

Developing STREAMS kernel modules is similar to user space programs with regard to header files. /usr/include/strcompat should be placed as as include directory to search in the gcc command line. The rules for compiling Linux kernel modules should be followed. In particular, several important intricacies should be considered:

  • The gcc compiler used to compile the kernel modules must be the same version of compiler that was used to compile the kernel.
  • The gcc command line must have the same compile flags that were used to compile the kernel.
  • The gcc command line must define several important kernel defines including ‘-DLINUX’, ‘-D__KERNEL__’, as well as the base name of the module.
  • The gcc command line must include several important include files directly on the command line such as ‘--include /lib/modules/2.4.20-28.7/build/include/linux/autoconf.h’ and maybe even ‘--include /lib/modules/2.4.20-28.7/build/include/linux/modversion.h’.14

3.6.4 Manual Pages

The strcompat-0.9.2.7 package installs a number of manual pages. The number of manual pages installed totals several hundred manual pages.

4 Porting

Although each of the manual pages of supported functions and structures provide compatibility and porting information in the COMPATIBILITY and CONFORMANCE sections, this document attempts to collect together some of the overarching pertinent information concerning porting from various UNIX operation systems support STREAMS to Linux Fast-STREAMS. For general portability information concerning porting from Linux Fast-STREAMS to other STREAMS implementations, to avoid technical lock-in, see the COMPATIBILITY section in the manual page for the specific function.

The porting information is organized by the operating system from which porting is being attempted. Note that, aside from configuration details, any system not listed here that is based on SVR 4.2 MP or on another of the implementations, should start with that implementation's portability information.

Porting information is organized into sections as follows:

4.1 SVR 3.2 Porting

Detailed portability information for porting STREAMS modules and drivers from SVR 3.2 to OpenSS7 STREAMS Compatibility is contained in this package under the svr3compat(9) manual page. This package also contains specific compatibility functions in the streams_svr3compat.ko module.

This section captures portability information for SVR 3.2 based systems. If the operating system from which you are porting more closely fits one of the other portability sections, please see that section. For the most part, porting from SVR 3.2 to OpenSS7 STREAMS Compatibility is not much different than porting forward from SVR 3.2 to SVR 4.2 MP. If you wish to be able to access some backward compatible SVR 3.2 functions, use the SVR 3.2 Compatibility Module. Therefore, it is recommended that STREAMS modules and drivers for SVR 3.2 be ported forward to SVR 4.2 MP before being ported to OpenSS7 STREAMS Compatibility.

4.1.1 Differences from SVR 3.2

The most significant difference in SVR 3.2 and SVR 4.2 MP was the declaration of the queue open and close routine entry points. Some STREAMS implementations still support both SVR 3.2 entry point declarations as well as SVR 4.2 MP entry point declarations. OpenSS7 STREAMS Compatibility only supports the SVR 4.2 MP style entry points. SVR 3.2 was not MP-safe. OpenSS7 STREAMS Compatibility is MP-safe.

A significant number of utilities were implemented in SVR 3.2 as architecture dependent macros. In SVR 4.2 MP these became architecture independent function calls. In general, OpenSS7 STREAMS Compatibility is different from SVR 3.2 in any way that SVR 3.2 is different from SVR 4.2 MP.

4.1.2 Commonalities with SVR 3.2

In general, most of the STREAMS utility functions that were present in SVR 3.2 also made it into SVR 4 (with few exceptions). SVR 3.2 did not yet have the concept of a DDI/DKI, but the STREAMS functions present in SVR 3.2 appear in the SVR 4.2 MP DDI/DKI.

4.1.3 Compatibility functions for SVR 3.2

alloc_proto(9)
Allocate control and data message blocks.
emajor(9)
Get the external (real) major device number from the device number.
eminor(9)
Get the external extended major device number from the device number.

4.1.4 Configuration with SVR 3.2

I have never seen a description of SVR 3.2 STREAMS configuration. I can only assume that it involved relinking the kernel in some fashion.

4.2 SVR 4.2 Porting

Detailed portability information for porting STREAMS modules and drivers from SVR 4.2 to OpenSS7 STREAMS Compatibility is contained in this package under the svr3compat(9) manual page. This package also contains specific compatibility functions in the streams_svr3compat.ko module.

This section captures portability information for SVR 4.2 MP based systems. If the operating system from which you are porting more closely fits one of the other portability section, please see that section.

4.2.1 Differences from SVR 4.2

OpenSS7 STREAMS Compatibility have very few difference from SVR 4.2 MP. Not all SVR 4.2 MP functions are implemented in the base OpenSS7 STREAMS Compatibility kernel modules. Some functions are included in the SVR 4.2 MP Compatibility Module (streams_svr4compat.ko) from the strcompat package.

4.2.2 Priority Levels

Linux has a different concept of priority levels SVR 4.2 MP. Linux has basically 4 priority levels as follows:

  1. Preemptive

    At this priority level, software and hardware interrupts are enabled and the kernel is executing with preemption enabled. This means that the currently executing kernel thread could preempt and sleep in favour of another thread of kernel execution.

    This priority level only exist on preemptive (mostly 2.6) kernels.

  2. Non-Preemptive

    At this priority level, software and hardware interrupts are enabled and the kernel is executing with preemption disabled. This means that the currently executing kernel thread will only be interrupted by software or hardware interrupts.

    This priority level exists in all kernels.

  3. Software Interrupts Disabled

    At this priority level, software interrupts are disabled and the kernel is executing with preemption disabled. This means that the currently executing kernel thread will only be interrupted by hardware interrupts.

    This is the case when the executing thread is processing a software interrupt, or when the currently executing thread has disabled software interrupts.

    This priority level exists in all kernels.

  4. Interrupt Service Routines Disabled

    At this priority level, hardware interrupts are disabled and the kernel is executing with preemption disabled. This means that the currently executing kernel thread will not be interrupted.

    This is the case when the executing thread is processing a hardware interrupt, or when the currently executing thread has disabled hardware interrupts.

    This priority level exists in all kernels.

4.2.3 Commonalities with SVR 4.2

4.2.4 Compatibility functions for SVR 4.2

4.2.5 Configuration with SVR 4.2

4.3 MPS Porting

Detailed portability information for porting STREAMS modules and drivers from MPS to OpenSS7 STREAMS Compatibility is contained in this package under the svr3compat(9) manual page. This package also contains specific compatibility functions in the streams_svr3compat.ko module.

4.3.1 Differences from MPS

4.3.2 Commonalities with MPS

4.3.3 Compatibility functions for MPS

4.3.4 Configuration with MPS

4.4 AIX Porting

Detailed portability information for porting STREAMS modules and drivers from AIX to OpenSS7 STREAMS Compatibility is contained in this package under the svr3compat(9) manual page. This package also contains specific compatibility functions in the streams_svr3compat.ko module.

4.4.1 Differences from AIX

4.4.2 Commonalities with AIX

4.4.3 Compatibility functions for AIX

4.4.4 Configuration with AIX

4.5 HP-UX Porting

Detailed portability information for porting STREAMS modules and drivers from HP-UX to OpenSS7 STREAMS Compatibility is contained in this package under the svr3compat(9) manual page. This package also contains specific compatibility functions in the streams_svr3compat.ko module.

4.5.1 Differences from HP-UX

4.5.2 Commonalities with HP-UX

4.5.3 Compatibility functions for HP-UX

4.5.4 Configuration with HP-UX

4.6 IRIX Porting

Detailed portability information for porting STREAMS modules and drivers from IRIX to OpenSS7 STREAMS Compatibility is contained in this package under the svr3compat(9) manual page. This package also contains specific compatibility functions in the streams_svr3compat.ko module.

4.6.1 Differences from IRIX

4.6.2 Commonalities with IRIX

4.6.3 Compatibility functions for IRIX

4.6.4 Configuration with IRIX

4.7 LfS Porting

Detailed portability information for porting STREAMS modules and drivers from LfS to OpenSS7 STREAMS Compatibility is contained in this package under the svr3compat(9) manual page. This package also contains specific compatibility functions in the streams_svr3compat.ko module.

4.7.1 Differences from LfS

4.7.2 Commonalities with LfS

4.7.3 Compatibility functions for LfS

4.7.4 Configuration with LfS

4.8 LiS Porting

Detailed portability information for porting STREAMS modules and drivers from LiS to OpenSS7 STREAMS Compatibility is contained in this package under the svr3compat(9) manual page. This package also contains specific compatibility functions in the streams_svr3compat.ko module.

4.8.1 Differences from LiS

4.8.2 Commonalities with LiS

4.8.3 Compatibility functions for LiS

4.8.4 Configuration with LiS

4.9 MacOT Porting

Detailed portability information for porting STREAMS modules and drivers from MacOT to OpenSS7 STREAMS Compatibility is contained in this package under the svr3compat(9) manual page. This package also contains specific compatibility functions in the streams_svr3compat.ko module.

4.9.1 Differences from MacOT

4.9.2 Commonalities with MacOT

4.9.3 Compatibility functions for MacOT

4.9.4 Configuration with MacOT

4.10 OSF/1 Porting

Detailed portability information for porting STREAMS modules and drivers from OSF/1 to OpenSS7 STREAMS Compatibility is contained in this package under the svr3compat(9) manual page. This package also contains specific compatibility functions in the streams_svr3compat.ko module.

4.10.1 Differences from OSF/1

4.10.2 Commonalities with OSF/1

4.10.3 Compatibility functions for OSF/1

4.10.4 Configuration with OSF/1

4.11 Solaris Porting

Detailed portability information for porting STREAMS modules and drivers from Solaris to OpenSS7 STREAMS Compatibility is contained in this package under the svr3compat(9) manual page. This package also contains specific compatibility functions in the streams_svr3compat.ko module.

4.11.1 Differences from Solaris

4.11.2 Commonalities with Solaris

4.11.3 Compatibility functions for Solaris

4.11.4 Configuration with Solaris

4.12 SUX Porting

Detailed portability information for porting STREAMS modules and drivers from SUX to OpenSS7 STREAMS Compatibility is contained in this package under the svr3compat(9) manual page. This package also contains specific compatibility functions in the streams_svr3compat.ko module.

4.12.1 Differences from SUX

4.12.2 Commonalities with SUX

4.12.3 Compatibility functions for SUX

4.12.4 Configuration with SUX

4.13 UnixWare Porting

Detailed portability information for porting STREAMS modules and drivers from UnixWare to OpenSS7 STREAMS Compatibility is contained in this package under the svr3compat(9) manual page. This package also contains specific compatibility functions in the streams_svr3compat.ko module.

4.13.1 Differences from UnixWare

4.13.2 Commonalities with UnixWare

4.13.3 Compatibility functions for UnixWare

4.13.4 Configuration with UnixWare

4.14 UXP Porting

Detailed portability information for porting STREAMS modules and drivers from UXP to OpenSS7 STREAMS Compatibility is contained in this package under the svr3compat(9) manual page. This package also contains specific compatibility functions in the streams_svr3compat.ko module.

4.14.1 Differences from UXP

4.14.2 Commonalities with UXP

4.14.3 Compatibility functions for UXP

4.14.4 Configuration with UXP

5 Conformance

5.1 STREAMS Compatibility

Linux Fast-STREAMS is designed to be as compatible as possible with as wide a range of STREAMS implementations as possible. On top of this base compatibility, the OpenSS7 STREAMS Compatibility package provides compatible STREAMS utility, DDI/DKI and configuration functions specific to a particular STREAMS implementation.15

OpenSS7 STREAMS Compatibility provides some degree of compatibility with other STREAMS implementation as follows:

— SVR 4.2 ES/MP
OpenSS7 STREAMS Compatibility provides some degree of operational compatibility with SVR 4.2 ES/MP to ease portability and common comprehension, see SVR 4.2 Compatibility.
— AIX 5L Version 5.1
OpenSS7 STREAMS Compatibility provides some degree of operational compatibility with AIX 5L Version 5.1 to ease portability and common comprehension, see AIX Compatibility.
— HP-UX 11.0i v2
OpenSS7 STREAMS Compatibility provides some degree of operational compatibility with HP-UX 11.0i v2 to ease portability and common comprehension, see HP-UX Compatibility.
— OSF/1 1.2/Digital UNIX/True 64
OpenSS7 STREAMS Compatibility provides some degree of operational compatibility with OSF/1 1.2/Digital UNIX to ease portability and common comprehension, see OSF/1 Compatibility.
— UnixWare 7.1.3 (OpenUnix 8)
OpenSS7 STREAMS Compatibility provides some degree of operational compatibility with UnixWare 7.1.3 (OpenUnix 8) to ease portability and common comprehension, see UnixWare Compatibility.
— Solaris 9/SunOS 5.9
OpenSS7 STREAMS Compatibility provides some degree of operational compatibility with Solaris 9/SunOS 5.9 to ease portability and common comprehension, see Solaris Compatibility.
— SUPER-UX
OpenSS7 STREAMS Compatibility provides some degree of operational compatibility with SUPER-UX to ease portability and common comprehension, see SUX Compatibility.
— UXP/V
OpenSS7 STREAMS Compatibility provides some degree of operational compatibility with UXP/V to ease portability and common comprehension, see UXP Compatibility.
— LiS-2.16.18
OpenSS7 STREAMS Compatibility provides some degree of operational compatibility with LiS 2.16 to ease portability and common comprehension, see LiS Compatibility.

For additional details, see About This Manual.

5.1.1 SVR 3.2 Compatibility

Almost all of the SVR 3.2 functions have been continued into SVR 4, with the exception of some backward compatibility functions. These functions are implemented in the UNIX System V Release 3.2 Compatibility Module, streams_svr3compat.ko. There are implemented in a separate module, because it is very unlikely that they will be used. This module can be suppressed at configuration time.

5.1.1.1 UNIX System V Release 3.2 Functions

Following are the UNIX System V Release 3.2 STREAMS functions and their documented support in the various implementation with which this package is compatible. The Linux Fast-STREAMS package implements many of these function in the core streams.ko kernel module.

cmpdev(9)
emajor(9) – get the external major number from a device number
eminor(9) – get the external minor number from a device number
etoimajor(9) – convert an external major number to an internal one
expdev(9)
itoemajor(9) – convert an internal major number to an external one
major(9) – get the major number from a device number
makedev(9) – make a device number from a major and minor number
minor(9) – get the minor number from a device number
Notes:

5.1.2 SVR 4.2 Compatibility

5.1.2.1 UNIX System V Release 4 STREAMS Functions::

Following are the UNIX System V Release 4.0 STREAMS functions and their documented support in the various implementations with which this package is compatible. The Linux Fast-STREAMS package implements all of these functions in the core streams.ko kernel module.

adjmsg(9) – trim a STREAMS message block.
allocb(9) – allocate a STREAMS message block.
backq(9) – find the previous STREAMS queue.
bcanput(9) – test a STREAMS queue for band flow control.
bufcall(9) – create a buffer callback.
canenable(9) – check if a queue can be enabled by putq(9).
canput(9) – test a STREAMS queue for flow control.
copyb(9) – copy a STREAMS message block.
copymsg(9) – copy a STREAMS message block chain.
datamsg(9) – test if a STREAMS message block is a data message.
dupb(9) – duplicate a STREAMS message block.
dupmsg(9) – duplicate a STREAMS message block chain.
enableok(9) – permit STREAMS queue enabling with putq(9).
esballoc(9) – allocate a STREAMS message block with external buffer.
esbbcall(9) – create an external buffer callback.
flushband(9) – flush a STREAMS queue band.
flushq(9) – flush a STREAMS queue.
freeb(9) – free a STREAMS message block.
freemsg(9) – free a STREAMS message block chain.
getadmin(9) – get a STREAMS module administrative function pointer.
getmid(9) – get a STREAMS module id.
getq(9) – get a message from a STREAMS queue.
insq(9) – insert a message into a STREAMS queue.
linkb(9) – chain a STREAMS message block onto another.
msgdsize(9) – calculate data size of a STREAMS message chain.
noenable(9) – prohibit STREAMS queue enabling on putq(9).
OTHERQ(9) – find the other STREAMS queue in a queue pair.
pullupmsg(9) – pull up a STREAMS message chain into a single message block.
putbq(9) – put a STREAMS message back on a queue.
putctl1(9) – put a 1 byte control message to a STREAMS queue.
putctl(9) – put a control message to a STREAMS queue.
putnext(9) – pass a message to the next STREAMS queue.
putq(9) – put a message on a STREAMS queue.
qenable(9) – enable a STREAMS queue.
qreply(9) – reply with a message to a STREAMS queue.
qsize(9) – count the messages on a STREAMS queue.
RD(9) – find the read queue of a STREAMS queue pair.
rmvb(9) – remove a message block from a STREAMS message chain.
rmvq(9) – remove a message from a STREAMS queue.
SAMESTR(9) – test if STREAMS queues belong to the same stream.
splstr(9) – set software priority level for STREAMS.
strlog(9) – log to the STREAMS logger.
strqget(9) – get attributes of the STREAMS stream head.
strqset(9) – set attributes of the STREAMS stream head.
testb(9) – test if a STREAMS message block can be allocated.
unbufcall(9) – cancel a STREAMS buffer callback.
unlinkb(9) – remove a message block from a STREAMS message chain.
WR(9) – find the write queue of a STREAMS queue pair.
Notes:
  • canenable(9) is really an SVR 3.2 compatibility function that should not be used with SVR 4 STREAMS programs.
  • For the most part, the UNIX System V Release 4.0 STREAMS functions are universally implemented. Exceptions to this include backq(9), which appears to be an oversight on the part of SUPER-UX documentation; esbbcall(9), that can be emulated by calling bufcall(9) with a size of zero; getadmin(9), getmid(9) and strlog(9), which seems to be more of a Solaris and LiS problem; SAMESTR(9), which is only useful on systems with STREAMS support for pipes and FIFOs.
  • Because all of these functions are supported by the core Linux Fast-STREAMS package, and all but getadmin(9), getmid(9) and strlog(9) are supported by the core Linux STREAMS (LiS) package, these functions are not provided in the SVR 4.2 Compatibility Module, streams_svr4compat.ko. The three functions missing from LiS are implemented in the Linux Fast-STREAMS Compatibility Module, streams_lfscompat.ko, that is only built and installed against LiS.
  • LiS always misses what Solaris misses. That is probably not a coincidence.
  • For specific compatibility notes, see the individual manual pages for these functions.

5.1.2.2 UNIX System V Release 4 MP STREAMS Functions

UNIX System V Release 4.0 Multiprocessor (MP) STREAMS functions and their documented support in the various implementations with which this package is compatible. Linux Fast-STREAMS implements most of these functions in the core streams.ko kernel module. The MPSTR_QLOCK(9), MPSTR_QRELE(9), MPSTR_STPLOCK(9) and MPSTR_STPRELE(9) locking functions are part of the SVR 4.2 MP compatibility module, streams_svr4compat.ko because they only have documented support in UnixWare.

bcanputnext(9) – test band flow control from the next STREAMS queue.
canputnext(9) – test flow control from the next STREAMS queue.
freezestr(9) – acquire exclusive access to a STREAMS queue.
msgpullup(9) – pull up bytes in a message into a new message block.
pcmsg(9) – test a message type for priority.
put(9) – put a message on a STREAMS queue (invoking its put procedure).
putnextctl1(9) – put a 1 byte control message to the next STREAMS queue.
putnextctl(9) – put a control message to the next STREAMS queue.
qprocsoff(9) – disable STREAMS queue procedures.
qprocson(9) – enable STREAMS queue procedures.
unfreezestr(9) – release exclusive access from a STREAMS queue.
MPSTR_QLOCK(9) – lock a STREAMS queue for exclusive access.
MPSTR_QRELE(9) – unlock a STREAMS queue from exclusive access.
MPSTR_STPLOCK(9) – lock a STREAMS stream head for exclusive access.
MPSTR_STPRELE(9) – unlock a STREAMS stream head from exclusive access.
Notes:
  • Although they are STREAMS functions, no implementation documentation other than UnixWare mentions the MPSTR_QLOCK(9), MPSTR_QRELE(9), MPSTR_STPLOCK(9) and MPSTR_STPRELE(9) functions, so they are placed in the SVR 4.2 MP compatibility module, streams_svr4compat.
  • The pcmsg(9) function seems to have been missed by a number of implementations.
  • AIX, OSF/1 and UXP/V do not document any of these functions, which is bad: these are the MP functions for STREAMS.
  • LiS did not have anything resembling a qprocson(9) or qprocsoff(9) implementation until recently (2.18.0). LiS also did not have any freezestr(9) or unfreezestr(9) implementation until recently (2.18.0). Neither implementations are fully functional or in accordance with STREAMS documentation, making them almost unusable.
  • LiS always misses what Solaris misses. That is probably not a coincidence.

5.1.2.3 UNIX System V Release 4.0 DDI/DKI Functions

ASSERT(9)
bcopy(9)
biodone(9)
biowait(9)
bp_mapin(9)
bp_mapout(9)
brelse(9)
btop(9)
btopr(9)
bzero(9)
clrbuf(9)
cmn_err(9)
copyin(9)
copyout(9)
delay(9)
dma_disable(9)
dma_enable(9)
dma_free_buf(9)
dma_free_cb(9)
dma_get_best_mode(9)
dma_get_buf(9)
dma_get_cb(9)
dma_pageio(9)
dma_prog(9)
dma_stop(9)
dma_swsetup(9)
dma_swstart(9)
drv_getparm(9)
drv_hztousec(9)
drv_priv(9)
drv_setparm(9)
drv_usectohz(9)
drv_usecwait(9)
freerbuf(9)
geteblk(9)
getemajor(9)
geteminor(9)
geterror(9)
getmajor(9)
getminor(9)
getrbuf(9)
hat_getkpfnum(9)
hat_getppfnum(9)
inb(9)
inl(9)
inw(9)
kmem_alloc(9)
kmem_fast_alloc(9)
kmem_free(9)
kmem_zalloc(9)
makedevice(9)
max(9)
min(9)
ngeteblk(9)
outb(9)
outl(9)
outw(9)
page_numtopp(9)
page_pptonum(9)
physiock(9)
physmap(9)
physmap_free(9)
pollwakeup(9)
pptophys(9)
psignal(9)
ptob(9)
rdam_filter(9)
repinsb(9)
repinsd(9)
repinsw(9)
repoutsb(9)
repoutsd(9)
repoutsw(9)
rmalloc(9)
rmfree(9)
rmsetwant(9)
sleep(9)
spl0(9)
spl1(9)
spl2(9)
spl3(9)
spl4(9)
spl5(9)
spl6(9)
spl7(9)
spl(9)
splbase(9)
spldisk(9)
splhi(9)
spltimeout(9)
spltty(9)
splx(9)
timeout(9)
uiomove(9)
untimeout(9)
ureadc(9)
useracc(9)
uwritec(9)
vtop(9)
wakeup(9)
Notes:
  • For specific compatibility notes, see the individual manual pages for these functions.

5.1.2.4 UNIX System V Release 4.0 MP DDI/DKI Functions

dtimeout(9)
itimeout(9)
rmallocmap(9)
rmalloc_wait(9)
rmfreemap(9)
bioerror(9)
getnextpg(9)
kvtoppid(9)
phalloc(9)
phfree(9)
phystoppid(9)
proc_ref(9)
proc_signal(9)
proc_unref(9)
Notes:
  • For specific compatibility notes, see the individual manual pages for these functions.

5.1.2.5 UNIX System V Release 4.2 DDI/DKI Functions

drv_gethardware(9)
mod_drvattach(9)
mod_drvdetach(9)
Notes:
  • For specific compatibility notes, see the individual manual pages for these functions.

5.1.2.6 UNIX System V Release 4.2 MP DDI/DKI Functions

bcb_alloc(9)
bcb_free(9)
bcmp(9)
buf_breakup(9)
cm_addval(9)
cm_AT_putconf(9)
cm_delval(9)
cm_devconfig_size(9)
cm_getbrdkey(9)
cm_getnbrd(9)
cm_getval(9)
cm_getversion(9)
cm_intr_attach(9)
cm_intr_detach(9)
cm_read_devconfig(9)
cm_write_devconfig(9)
dma_cascade(9)
dma_physreq(9)
drv_mmap(9)
drv_munmap(9)
getpl(9)
iobitmapctl(9)
kmem_alloc_physcontig(9)
kmem_free_physcontig(9)
KS_HOLDLOCKS(9)
LOCK(9)
LOCK_ALLOC(9)
LOCK_DEALLOC(9)
LOCK_OWNED(9)
met_ds_alloc_stats(9)
met_ds_dealloc_stats(9)
met_ds_dequeued(9)
met_ds_hist_stats(9)
met_ds_iodone(9)
met_ds_queued(9)
ovbcopy(9)
physreq_alloc(9)
physreq_free(9)
physreq_prep(9)
proc_valid(9)
RW_ALLOC(9)
RW_DEALLOC(9)
RW_RDLOCK(9)
RW_TRYRDLOCK(9)
RW_TRYWRLOCK(9)
RW_UNLOCK(9)
RW_WRLOCK(9)
SLEEP_ALLOC(9)
SLEEP_DEALLOC(9)
SLEEP_LOCK(9)
SLEEP_LOCKAVAIL(9)
SLEEP_LOCKOWNED(9)
SLEEP_LOCK_SIG(9)
SLEEP_TRYLOCK(9)
SLEEP_UNLOCK(9)
strcat(9)
strcmp(9)
strcpy(9)
strlen(9)
strncat(9)
strncmp(9)
strncpy(9)
SV_ALLOC(9)
SV_BROADCAST(9)
SV_DEALLOC(9)
SV_SIGNAL(9)
SV_WAIT(9)
SV_WAIT_SIG(9)
TRYLOCK(9)
UNLOCK(9)
Notes:
  • For specific compatibility notes, see the individual manual pages for these functions.

5.1.3 MPS Compatibility

5.1.3.1 Mentat Portable Streams (MPS) Utility Functions

The Mentat Portable Streams (MPS) utility functions are important because they exist on many UNIX systems. AIX, HP-UX, OSF/1.2 and Mac OpenTransport are based on MPS. Almost all variants use the Mentat TCP/IP implementations, and therefore have implementations of many of these functions internally if not exposed. AIX, OSF/1.2 and especially Mac OpenTransport expose and document most (if not all) of these functions. The OpenSS7 STREAMS Compatibility package supports all of these functions.16

mi_alloc(9) – allocate and free kernel memory without later regard to size.
mi_allocq(9) allocq(9) replacement.
mi_alloc_sleep(9) kmem_alloc(9) replacement.
mi_attach(9) – associate instance data with a STREAMS queue.
mi_bcmp(9) – compare two binary memory extents.
mi_bufcall(9) – reliable alternative to bufcall(9).
mi_close_comm(9) STREAMS common minor device close utility.
mi_close_detached(9) – release instance data from the STREAMS queue and perform close cleanup.
mi_close_free(9) – free a STREAMS driver or module instance from a Stream.
mi_close_unlink(9) – unlink a STREAMS driver or module instance from a Stream.
mi_copy_done(9) ioctl(2s) complete.
mi_copyin(9) – copy data from a user buffer.
mi_copyin_n(9) – copy data from a user buffer.
mi_copyout(9) – copy data from a user buffer.
mi_copyout_alloc(9) – allocate a buffer to be copied out using mi_copyout(9).
mi_copy_set_rval(9) – set return value for input-output control.
mi_copy_state(9) – current state of the input-output control process.
mi_detach(9) – disassociate instance data from the STREAMS queue.
mi_first_dev_ptr(9) – obtain first device instance pointer.
mi_first_ptr(9) – obtain first instance pointer.
mi_free(9) kmem_free(9) replacement.
mi_freeq(9) freeq(9) replacement.
mi_mpprintf(9) – print a formatted string to a message buffer.
mi_mpprintf_nr(9) – continue to print a formatted string to a message buffer.
mi_next_dev_ptr(9) – obtain next device instance pointer.
mi_next_ptr(9) STREAMS minor device list traversal.
mi_offset_param(9) – obtain parameter location within STREAMS message block.
mi_offset_paramc(9) – obtain parameter location within STREAMS message block chain.
mi_open_alloc(9) – allocate a STREAMS driver or module instance.
mi_open_alloc_sleep(9) – allocate a STREAMS driver or module instance (may sleep).
mi_open_comm(9) STREAMS common minor device open utility.
mi_open_detached(9) STREAMS create detached instance data.
mi_open_link(9) – link a STREAMS driver or module instance on open.
mi_prev_ptr(9) STREAMS minor device list traversal.
mi_reallocb(9) – reallocate a STREAMS message block.
mi_reuse_proto(9) – reuse a STREAMS protocol message block.
mi_set_sth_copyopt(9) – set the STREAMS Stream head copy options.
mi_set_sth_hiwat(9) – set the STREAMS Stream head high water mark.
mi_set_sth_lowat(9) – set the STREAMS Stream head low water mark.
mi_set_sth_maxblk(9) – set the STREAMS Stream head maximum block size.
mi_set_sth_wroff(9) – set the STREAMS Stream head write offset.
mi_sprintf(9) sprintf(3) replacement.
mi_sprintf_putc(9) – put a character in a sprintf buffer.
mi_strcmp(9) strcmp(3) replacement.
mi_strlen(9) strlen(3) replacement.
mi_strlog(9) strlog(9) replacement.
mi_strol(9) strtol(3) replacement.
mi_timer(9) – process a STREAMS timer.
mi_timer_alloc(9) – allocate a STREAMS timer.
mi_timer_cancel(9) – cancel a STREAMS timer.
mi_timer_free(9) – free a STREAMS timer.
mi_timer_move(9) – move a STREAMS timer.
mi_timer_q_switch(9) – switch queues for a STREAMS timer.
mi_timer_stop(9) – stop a STREAMS timer.
mi_timer_valid(9) – check a STREAMS timer.
mi_zalloc(9) kmem_zalloc(9) replacement.
mi_zalloc_sleep(9) kmem_zalloc(9) replacement.
mps_become_writer(9) STREAMS mutex upgrade.
mps_intr_disable(9) – disable interrupts.
mps_intr_enable(9) – enable interrupts.
Notes:
  • Mac OpenTransport documents almost all of these functions. The internal implementations of some UNIX variants differ from the Mac OpenTransport documentation in name and prototype.
  • For the functions that are exposed by various implementations and their exact names and prototypes, see the individual variant sections.
  • For specific compatibility notes, see the individual manual pages for these functions.

5.1.4 AIX Compatibility

5.1.4.1 AIX 5L Version 5.1 Portable STREAMS Environment (PSE) STREAMS Functions

mi_bufcall(9) – reliable alternative to bufcall(9).
mi_close_comm(9) STREAMS common minor device close utility.
mi_next_ptr(9) STREAMS minor device list traversal.
mi_open_comm(9) STREAMS common minor device open utility.
putctl2(9)
splstr(9) – set software priority level for STREAMS.
splx(9)
str_install(9)
unweldq(9)
wantio(9)
wantmsg(9)
weldq(9)
Notes:
  • For specific compatibility notes, see the individual manual pages for these functions.

5.1.5 HP-UX Compatibility

5.1.6 IRIX Compatibility

5.1.7 LfS Compatibility

5.1.8 LiS Compatibility

5.1.9 MacOT Compatibility

5.1.10 OSF/1 Compatibility

5.1.11 Solaris Compatibility

5.1.12 SUX Compatibility

5.1.13 UnixWare Compatibility

5.1.14 UXP Compatibility

6 Releases

This is the OpenSS7 Release of the OpenSS7 STREAMS Compatibility tools, drivers and modules used with the Linux Fast-STREAMS or Linux STREAMS17 SVR 4.2 STREAMS releases.

The purpose of providing a separate release of this package was to separate the OpenSS7 STREAMS Compatibility tools, headers, drivers and modules from the Linux STREAMS18 package for use with both Linux STREAMS19 and Linux Fast-STREAMS in preparation for replacement of the former by the later.

The following sections provide information on OpenSS7 STREAMS Compatibility releases as well as compatibility information of OpenSS7 release to mainstream UNIX releases of the core, modules and drivers, as well as Linux kernel compatibility.

6.1 Prerequisites

The quickest and easiest way to ensure that all prerequisites are met is to download and install this package from within the OpenSS7 Master Package, openss7-0.9.2.G, instead of separately.

Prerequisites for the OpenSS7 STREAMS Compatibility package are as follows:

  1. Linux distribution, somewhat Linux Standards Base compliant, with a 2.4 or 2.6 kernel and the appropriate tool chain for compiling out-of-tree kernel modules. Most recent Linux distributions are usable out of the box, but some development packages must be installed. For more information, see Compatibility.

    − A fairly LSB compliant GNU/Linux distribution.20
    − Linux 2.4 kernel (2.4.10 - 2.4.27), or
    − Linux 2.6 kernel (2.6.3 - 2.6.26);
    − glibc2 or better.
    − GNU groff (for man pages).21
    − GNU texinfo (for info files).
    − GNU bison and flex (for config programs).
    − net-snmp (for SNMP agents).22

(Note: If you acquired strcompat a part of the OpenSS7 Master Package, then the dependencies listed below will already have been met by unpacking the master package.)

  1. OpenSS7 Linux Fast-STREAMS, streams-0.9.2.4. 23

If you need to rebuild the package from sources with modifications, you will need a larger GNU tool chain as described in See Downloading from CVS.

6.2 Compatibility

This section discusses compatibility with major prerequisites.

6.2.1 GNU/Linux Distributions

OpenSS7 STREAMS Compatibility is compatible with the following Linux distributions:24

  • CentOS Enterprise Linux 3.4 (centos34) TBD
  • CentOS Enterprise Linux 4.0 (centos4) TBD
  • CentOS Enterprise Linux 4.92 (centos49) TBD
  • CentOS Enterprise Linux 5.0 (centos5)
  • CentOS Enterprise Linux 5.1 (centos51)
  • CentOS Enterprise Linux 5.2 (centos52)
  • Debian 3.0r2 Woody (deb3.0) TBD
  • Debian 3.1r0a Sarge (deb3.1) TBD
  • Debian 4.0r1 Etch (deb4.0)
  • Debian 4.0r2 Etch (deb4.0)
  • Debian 4.0r3 Etch (deb4.0)
  • Fedora Core 1 (FC1) TBD
  • Fedora Core 2 (FC2) TBD
  • Fedora Core 3 (FC3) TBD
  • Fedora Core 4 (FC4) TBD
  • Fedora Core 5 (FC5) TBD
  • Fedora Core 6 (FC6) TBD
  • Fedora 7 (FC7)
  • Fedora 8 (FC8)
  • Fedora 9 (FC9)
  • Gentoo 2006.1 (untested) TBD
  • Gentoo 2007.1 (untested) TBD
  • Lineox 4.026 (LEL4) TBD
  • Lineox 4.053 (LEL4) TBD
  • Mandrakelinux 9.2 (MDK92) TBD
  • Mandrakelinux 10.0 (MDK100) TBD
  • Mandrakelinux 10.1 (MDK101) TBD
  • Mandriva Linux LE2005 (MDK102) TBD
  • Mandriva Linux LE2006 (MDK103) TBD
  • Mandriva One (untested)
  • RedHat Linux 7.2 (RH7)
  • RedHat Linux 7.3 (RH7)
  • RedHat Linux 8.0 (RH8) TBD
  • RedHat Linux 9 (RH9) TBD
  • RedHat Enterprise Linux 3.0 (EL3) TBD
  • RedHat Enterprise Linux 4 (EL4)
  • RedHat Enterprise Linux 5 (EL5)
  • SuSE 8.0 Professional (SuSE8.0) TBD
  • SuSE 9.1 Personal (SuSE9.1) TBD
  • SuSE 9.2 Professional (SuSE9.2) TBD
  • SuSE OpenSuSE (SuSEOSS) TBD
  • SuSE 10.0 (SuSE10.0) TBD
  • SuSE 10.1 (SuSE10.1) TBD
  • SuSE 10.2 (SuSE10.2) TBD
  • SuSE 10.3 (SuSE10.3) TBD
  • SuSE 11.0 (SuSE11.0)
  • SLES 9 (SLES9) TBD
  • SLES 9 SP2 (SLES9) TBD
  • SLES 9 SP3 (SLES9) TBD
  • SLES 10 (SLES10)
  • Ubuntu 5.10 (ubu5.10) TBD
  • Ubuntu 6.03 LTS (ubu6.03) TBD
  • Ubuntu 6.10 (ubu6.10) TBD
  • Ubuntu 7.04 (ubu7.04) TBD
  • Ubuntu 7.10 (ubu7.10)
  • Ubuntu 8.04 (ubu8.04)
  • WhiteBox Enterprise Linux 3.0 (WBEL3) TBD
  • WhiteBox Enterprise Linux 4 (WBEL4) TBD

When installing from the tarball (see Installing the Tar Ball), this distribution is probably compatible with a much broader array of distributions than those listed above. These are the distributions against which the current maintainer creates and tests builds.

6.2.2 Kernel

The OpenSS7 STREAMS Compatibility package compiles as a Linux kernel module. It is not necessary to patch the Linux kernel to build or use the package.25 Nor do you have to recompile your kernel to build or use the package. OpenSS7 packages use autoconf scripts to adapt the package source to your existing kernel. The package builds and runs nicely against production kernels from the distributions listed above. Rather than relying on kernel versions, the autoconf scripts interrogate the kernel for specific features and variants to better adapt to distribution production kernels that have had patches applied over the official kernel.org sources.

The OpenSS7 STREAMS Compatibility package is compatible with 2.4 kernel series after 2.4.10 and has been tested up to and including 2.4.27. It has been tested from 2.6.3 up to and including 2.6.26 (with Fedora 9, openSUSE 11.0 and Ubuntu 8.04 patchsets). Please note that your mileage may vary if you use a kernel more recent than 2.6.26.4: it is difficult to anticipate changes that kernel developers will make in the future. Many kernels in the 2.6 series now vary widely by release version and if you encounter problems, try a kernel within the supported series.

UP validation testing for kernels is performed on all supported architectures. SMP validation testing was initially performed on UP machines, as well as on an Intel 3.0GHz Pentium IV 630 with HyperThreading enabled (2x). Because HyperThreading is not as independent as multiple CPUs, SMP validation testing was limited. Current releases have been tested on dual 1.8GHz Xeon HP servers (2x) as well as dual quad-core SunFire (8x) servers.

It should be noted that, while the packages will configure, build and install against XEN kernels, that problems running validation test suites against XEN kernels has been reported. XEN kernels are explicitly not supported. This may change at some point in the future if someone really requires running OpenSS7 under a XEN kernel.

6.2.3 Architectures

The OpenSS7 STREAMS Compatibility package compiles and installs on a wide range of architectures. Although it is believed that the package will work on all architectures supported by the Linux kernel being used, validation testing has only been performed with the following architectures:

  • ix86
  • x86_64
  • ppc (MPC 860)
  • ppc64

32-bit compatibility validation testing is performed on all 64-bit architectures supporting 32-bit compatibility. If you would like to validate an OpenSS7 package on a specific machine architecture, you are welcome to sponsor the project with a test machine.

6.2.4 Linux STREAMS

The OpenSS7 STREAMS Compatibility package is currently compatible with Linux STREAMS,26 however, to use the OpenSS7 STREAMS Compatibility package with LiS requires use of the OpenSS7 release packages of LiS. The OpenSS7 STREAMS Compatibility package is compatible with the OpenSS7 LiS-2.18.7 release that is available from the The OpenSS7 Project Downloads Page. But, do not use LiS: it is buggy, unsupported and deprecated. Use Linux Fast-STREAMS instead.

6.2.5 Linux Fast-STREAMS

The OpenSS7 STREAMS Compatibility package is currently compatible with Linux Fast-STREAMS (LfS). The OpenSS7 STREAMS Compatibility package is compatible with the OpenSS7 streams-0.9.2.4 release that is available from the The OpenSS7 Project Downloads Page.

6.3 Release Notes

The sections that follow provide information on OpenSS7 releases of the OpenSS7 STREAMS Compatibility package.

Major changes for release strcompat-0.9.2.7

This is the seventh separate OpenSS7 Project release of the OpenSS7 STREAMS Compatibility package. The package was originally present in the Linux Fast-STREAMS streams-0.7a.2 release package, but has been separated for five releases.

This release is a stable, production grade release for Linux Fast-STREAMS and is part of the OpenSS7 Master Package (openss7-0.9.2.G). The release includes maintenance support for recent distributions and tool chain, but also includes some performance and feature upgrades and inspection bug fixes. It deprecates previous releases. Please upgrade before reporting bugs on previous releases.

This release is primarily a maintenance release.

Major features since the last public release are as follows:

  • Minor documentation corrections.
  • Kernel module license made explicit "GPL v2". And then changed back to "GPL".
  • License upgrade to AGPL Version 3.
  • Modifications to build under Fedora2.6.22.5-49’ kernel. These changes also support ‘2.6.22.9-91.fc7’ kernel.
  • Ability to strap out major documentation build and installation primarily for embedded targets.
  • Improvements to common build process for embedded and cross-compile targets.
  • Build corrections for recent RHAS4 kernels that define irq_handler_t with a 3 argument function template.
  • Build corrections for XEN kernels that define paddr_t.
  • Fixes for older 2.4 kernels.
  • Modifications to build under Fedora2.6.25-45.fc9’ and ‘2.6.26.5-45.fc9’ kernels.
  • Updated tool chain to m4-1.4.12, autoconf-2.63 and texinfo-4.13.
  • Conversion of RPM spec files to common approach for major subpackages.
  • Updated references database for manual pages and roff documents.
  • Build system now builds yum(8) repositories for RPMs and apt-get(8) repositories for DEBs. Installation documentation has been updated to include details of repository install sourcesref.
  • Added MODULE_VERSION to all modules and drivers.
  • Significant rework of the internal implementation of the mpscompat(9) Mentat Portable STREAMS compatability functions that also affects the behaviour of the corresponding osfcompat(9), aixcompat(9), maccompat(9) and hpuxcompat(9) functions that depend on them. Added documentation for mi_acquire(9), mi_acquire_sleep(9) and mi_release(9); also mi_open_grab(9) and mi_close_put(9).

    A number of difficulties were discovered by the OpenSS7 Project in the MPS compatability functions. See BUGS in the release for more information. These the mpscompat(9) functions are now used extensively by modules and drivers under the OpenSS7 Project in favor of the previously used os7compat(9) functions.

  • Added a test driver and module for the purpose of testing the MPS compatability functions.

This is a public stable production grade release of the package: it deprecates previous releases. Please upgrade to the current release before reporting bugs.

As with other OpenSS7 releases, this release configures, compiles, installs and builds RPMs and DEBs for a wide range of Linux 2.4 and 2.6 RPM- and DPKG-based distributions, and can be used on production kernels without patching or recompiling the kernel.

This package is publicly released under the GNU Affero General Public License Version 3. The release is available as an autoconf tarball, SRPM, DSC, and set of binary RPMs and DEBs. See the downloads page for the autoconf tarballs, SRPMs and DSCs. For tarballs, SRPMs, DSCs and binary RPMs and DEBs, see the strcompat package page.

See http://www.openss7.org/codefiles/strcompat-0.9.2.7/ChangeLog and http://www.openss7.org/codefiles/strcompat-0.9.2.7/NEWS in the release for more information. Also, see the strcompat.pdf manual in the release (also in html http://www.openss7.org/strcompat_manual.html).

For the news release, see http://www.openss7.org/rel20081029_J.html.

Major changes for release strcompat-0.9.2.6

This is the sixth separate OpenSS7 Project release of the OpenSS7 STREAMS Compatibility package. The package was originally present in the Linux Fast-STREAMS streams-0.7a.2 release package, but has been separated for five releases.

This release is a stable, production grade release for Linux Fast-STREAMS and is part of the OpenSS7 Master Package (openss7-0.9.2.F). It deprecates previous releases. Please upgrade before reporting bugs on previous releases.

This release is primarily a maintenance release.

Major features since the last public release are as follows:

  • Support build on openSUSE 10.2.
  • Support build on Fedora 7 and 2.6.21 kernel.
  • Rework of mi_timer(9) based timers with the addition of several new helper functions. Enhancements and minor corrections to some OpenSS7 specific compatibility functions.
  • Support build on CentOS 5.0 (RHEL5).
  • Support build on Ubuntu 7.04.
  • Updated to gettext 0.16.1.
  • Changes to support build on 2.6.20-1.2307.fc5 and 2.6.20-1.2933.fc6 kernel.
  • Supports build on Fedora Core 6.
  • Support for recent distributions and tool chains.

Major changes for release strcompat-0.9.2.5

This is the fifth separate OpenSS7 Project release of the OpenSS7 STREAMS Compatibility package. The package was originally present in the Linux Fast-STREAMS streams-0.7a.2 release package, but has been separated for five releases.

This release is a stable, production grade release for Linux Fast-STREAMS and is part of the OpenSS7 Master Package (openss7-0.9.2.E). It deprecates previous releases. Please upgrade before reporting bugs on previous releases.

This release is primarily a maintenance release. Some functionality of the package has been tested by its use in other packages and some defects corrected. Support for LiS was deprecated as of the previous release.

Major features since the last public release are as follows:

  • Added versions to all exported symbols. Made OpenSS7 unique functions GPL export.
  • Improvements to the common build environment with better support for standalone package builds on 2.4 kernels.
  • Fixed bug found from inspection in mi_copyout(9) function.
  • Support for autoconf 2.61, automake 1.10 and gettext 0.16.
  • Support for Ubuntu 6.10 distribution and bug fixes for i386 kenels.
  • The package now looks for other subpackages with a version number as unpacked by separate tarball.

Major changes for release strcompat-0.9.2.4

This is the fourth separate OpenSS7 Project release of the OpenSS7 STREAMS Compatibility package. The package was originally present in the Linux Fast-STREAMS streams-0.7a.2 release package, but has been separated for four releases.

This release is a stable, production grade release for Linux Fast-STREAMS and is part of the OpenSS7 Master Package (openss7-0.9.2.G). It deprecates previous releases. Please upgrade before reporting bugs on previous releases.

This release is primarily a maintenance release. Some functionality of the package has been tested by its use in other packages and some defects corrected. Support for LiS is deprecated as of this release.

The release provides the following enhancements and fixes:

  • Support for most recent 2.6.18 kernels (including Fedora Core 5 with inode diet patch set).
  • Now builds 32-bit compatibility libraries and tests them against 64-bit kernel modules and drivers. The ‘make installcheck’ target will now automatically test both 64-bit native and 32-bit compatibility versions, one after the other, on 64-bit platforms.
  • Added versions to all library symbols.
  • Many documentation updates for all OpenSS7 packages. Automated release file generation making for vastly improved and timely text documentation present in the release directory.
  • Dropped support for LiS.
  • Package will now support extended ranges of minor devices on 2.6 kernels under Linux Fast-STREAMS only.
  • Better support for Ubuntu and recent gcc compilers, including debian script corrections.
  • Better detection of SUSE distributions, release numbers and SLES distributions: support for additional SuSE distributions on ix86 as well as x86_64. Added distribution support includes SLES 9, SLES 9 SP2, SLES 9 SP3, SLES 10, SuSE 10.1.
  • Improved compiler flag generation and optimizations for recent gcc compilers and some idiosyncratic behaviour for some distributions (primarily SUSE).
  • Optimized compilation is now available also for user level programs in addition to kernel programs. Added new --with-optimize option to configure to accomplish this.
  • Added --disable-devel configure option to suppress building and installing development environment. This feature is for embedded or pure runtime targets that do not need the development environment (static libraries, manual pages, documentation).
  • Added send-pr script for automatic problem report generation.

Major changes for release strcompat-0.9.2.3

This release is primarily to support additional compilers (gcc 4.0.2), architectures (x86_64, SMP, 32-bit compatibility), recent Linux distributions (EL4, SuSE 10, LE2006, OpenSuSE) and kernels (2.6.15).

  • Corrections for and testing of 64-bit clean compile and test runs on x86_64 architecture. Some bug corrections resulting from gcc 4.0.2 compiler warnings.
  • Changes to satisfy gcc 4.0.2 compiler.
  • Corrected build flags for Gentoo and 2.6.15 kernels as reported on mailing list.
  • Corrections for and testing of 64-bit clean compile and test runs on x86_64 architecture. Some bug corrections resulting from gcc 4.0.2 compiler warnings.
  • Initial corrections for and testing of SMP operation on Intel 630 Hyper-Threaded SMP on x86_64. This package should now run well on N-way Xeons even with Hyper-Threading enabled.
  • Corrections and validation of 32-bit compatibility over 64-bit on x86_64. Should apply well to other 64-bit architectures as well.

This is a public beta test release of the package.

Major changes for release strcompat-0.9.2.2

This is primarily a bug fixes release and corrections resulting from testing. This is a major bug fix release. The previous release was largely untested. This release has been verified (conformance test suite passes) for operation with Linux Fast-STREAMS (streams-0.7a.4).

Initial release strcompat-0.9.2.1

Initial autoconf/RPM packaging of the strcompat release.

This is the initial release of the OpenSS7 STREAMS Compatibility package for Linux Fast-STREAMS (and LiS). These compatibility modules were formerly part of the Linux Fast-STREAMS package (streams-0.7a.3), however, as they were also applicable to LiS, they have been removed into a separate package. Once Linux Fast-STREAMS is production grade, these compatibility modules will be rolled back into the streams package as LiS becomes deprecated.

6.4 Maturity

The OpenSS7 Project adheres to the following release philosophy:

  • pre-alpha release
  • alpha release
  • beta release
  • gamma release
  • production release
  • unstable release

6.4.1 Pre-Alpha Releases

Pre-alpha releases are releases that have received no testing whatsoever. Code in the release is not even known to configure or compile. The purpose of a pre-alpha release is to make code and documentation available for inspection only, and to solicit comments on the design approach or other characteristics of the software package.

Pre-alpha release packages ship containing warnings recommending that the user not even execute the contained code.

6.4.2 Alpha Releases

Alpha releases are releases that have received little to no testing, or that have been tested and contains known bugs or defects that make the package unsuitable even for testing. The purpose for an alpha release are the same as for the pre-alpha release, with the additional purpose that it is an early release of partially functional code that has problems that an external developer might be willing to fix themselves and contribute back to the project.

Alpha release packages ship containing warnings that executing the code can crash machines and might possibly do damage to systems upon which it is executed.

6.4.3 Beta Releases

Beta releases are releases that have received some testing, but the testing to date is not exhaustive. Beta release packages do not ship with known defects. All known defects are resolved before distribution; however, as exhaustive testing has not been performed, unknown defects may exist. The purpose for a beta release is to provide a baseline for other organizations to participate in the rigorous testing of the package.

Beta release packages ship containing warnings that the package has not been exhaustively tested and that the package may cause systems to crash. Suitability of software in this category for production use is not advised by the project; however, as always, is at the discretion of the user of the software.

6.4.4 Gamma Releases

Gamma releases are releases that have received exhaustive testing within the project, but external testing has been minimal. Gamma release packages do not ship with known defects. As exhaustive internal testing has been performed, unknown defects should be few. Please remember that there is NO WARRANTY on public release packages.

Gamma release packages typically resolve problems in previous beta releases, and might not have had full regression testing performed. Suitability of software in this category for production use is at the discretion of the user of the software. The OpenSS7 Project recommends that the complete validation test suites provided with the package be performed and pass on target systems before considering production use.

6.4.5 Production Releases

Production releases are releases that have received exhaustive testing within the project and validated on specific distributions and architectures. Production release packages do not ship with known defects. Please remember that there is NO WARRANTY on public release packages.

Production packages ship containing a list of validated distributions and architectures. Full regression testing of any maintenance changes is performed. Suitability of software in this category for production use on the specified target distributions and architectures is at the discretion of the user. It should not be necessary to preform validation tests on the set of supported target systems before considering production use.

6.4.6 Unstable Releases

Unstable releases are releases that have received extensive testing within the project and validated on a a wide range of distributions and architectures; however, is has tested unstable and found to be suffering from critical problems and issues that cannot be resolved. Maintenance of the package has proved impossible. Unstable release packages ship with known defects (and loud warnings). Suitability of software in this category for production use is at the discretion of the user of the software. The OpenSS7 Project recommends that the problems and issues be closely examined before this software is used even in a non-production environment. Each failing test scenario should be completely avoided by the application. OpenSS7 beta software is more stable that software in this category.

6.5 Bugs

6.5.1 Defect Notices

OpenSS7 STREAMS Compatibility could possibly contain unknown defects. This is a production release. Nevertheless, some remaining unknown defects could possibly be harmful. Validation testing has been performed by the OpenSS7 Project and external entities on this software for the set of systems listed in the release notes. Nevertheless, the software might still fail to configure or compile on other systems. The OpenSS7 Project recommends that you validate this software for your target system before using this software. Use at your own risk. Remember that there is NO WARRANTY.27

This software is production software. As such, it is stable on validated systems but might still crash your kernel in unique circumstances. Installation of the software on a non-validated distribution might mangle your header files or Linux distribution in such a way as to make it unusable. Crashes could possibly lock your system and rebooting the system might not repair the problem. You can possibly lose all the data on your system. Because this software stands a chance of crashing your kernel, the resulting unstable system could possibly destroy computer hardware or peripherals making them unusable. You might void the warranty on any system on which you run this software. YOU HAVE BEEN WARNED.

6.5.2 Known Defects

With the exception of packages not originally created by the OpenSS7 Project, the OpenSS7 Project software does not ship with known bugs in any release stage except pre-alpha. OpenSS7 STREAMS Compatibility had no known bugs at the time of release.

6.5.3 Defect History

This section contains historical bugs that were encountered during development and their resolutions. This list serves two purposes:

  1. It captures bugs encountered between releases during development that could possibly reoccur (and the Moon is made of blue cheese). It therefore provides a place for users to look if they encounter a problem.
  2. It provides a low overhead bug list between releases for developers to use as a TODO list.
Bugs
008. 2008-10-19T19:57:41+0000
mi_open_link() was not walking device lists correctly.

*fixed* in strcompat-0.9.2.7.

007. 2008-10-19T10:39:26+0000
mi_open_link() was not returning the assigned device number in devp when sflag was CLONEOPEN.

*fixed* in strcompat-0.9.2.7.

006. 2008-07-11T13:52:04+0000
lis_alloc_sem() was not setting the supplied count against the created semaphore, but was alway setting the semaphore to 1 (unlocked).

*fixed* in strcompat-0.9.2.7.

005. 2008-05-26T14:06:22+0000
lis_register_strdev() was failing whenever nminor was greater than zero or not an even multiple of 256. This was due to an error in the logic checking for multiple majors. (Thanks to Omer Tunali for reporting this bug.)

*fixed* in strcompat-0.9.2.7.

004. 2007-07-21T17:26:01-0600
It was reported that, even with the fix below, validation test suites for XEN kernels are failing. XEN kernels are, therefore, not supported. (Thanks to Bryan Shupe at Flying J for reporting this bug.)

*noted* in strcompat-0.9a.7.rc1.

003. 2007-07-21T17:22:10-0600
It was reported that paddr_t is already defined in recent XEN kernels, causing compile to fail for these kernels. (Thanks to Bryan Shupe at Flying J for reporting this bug.)

*fixed* in strcompat-0.9a.7.rc1.

A check was added to the configure script to check for the existence of paddr_t.

002. 2007-07-21T17:15:02-0600
It was discovered that recent kernel on RHAS4 are defining irq_handler_t but have the old 3 argument function template for irq handlers. The detection logic assumed that if irq_hander_t existed, that the newer 2 argument function template for irq handlers were in effect. This caused builds to fail on these RHAS4 kernels.

*fixed* in strcompat-0.9a.7.rc1.

A check was added to the configure script to test whether the irq_handler_t has the newer 2 argument template.

001. 2007-01-12T11:40:15-0600
A bug in the mi_copyout(9) function was discovered by inspection. The function should complete the last stage of a non-TRANSPARENT input-output control operation by returning an M_IOCACK(9) message, but did not. This was fixed for release 0.9.2.5.

6.6 Schedule

Current Plan

There are not many things left to be done on the production OpenSS7 STREAMS Compatibility Modules package. The current plan for the package is largely a maintenance plan including support for current distributions and kernels.

There are currently a large array of Solaris DDI compatibility functions that are not implemented; however, there have not been many requests for this capability. Perhaps the advent of OpenSolaris has forstalled porting of many drivers to Linux, but, regardless of the cause, there is just not a demand. If there are any functions that you need the OpenSS7 Project to support that are not currently supported in one of the compatibility modules, please request support for them on the openss7-develop mailing list.

Things to Do
  • Implement the AIX strtune() command.

    *todo*

  • I would really really like a set of rmallocmap(), rmalloc(), rmalloc_wait(), rmfree(), rmfreemap() functions so that drivers could stop using the kmem_cache functions but could acheive similar effect.

    *todo*

  • Work in MUTEX_ALLOC(), MUTEX_DESTROY(), MUTEX_LOCK(), MUTEX_MINE(), MUTEX_OWNED(), MUTEX_TRYLOCK(), MUTEX_UNLOCK() from IRIX into irixcompat.c.

    *todo*

  • Work in streams_interrupt() and STREAMS_TIMEOUT() from IRIX into irixcompat.c.

    *todo*

  • Hey, here's an idea for testing Solaris compatibility: take an OpenSolaris source file for a STREAMS driver and compile and test it under Linux with no (or minimal) source code modifications!

    *todo*

  • Write test programs and test suites. There are really not any test programs or test suites available for the OpenSS7 STREAMS Compatibility Modules package as of strcompat-0.9.2.2.

    *todo*

  • Not all compatibility functionality is implemented. There are a large number of Sun DDI functions applicable to STREAMS that have not been fully implemented. Also, the Sun configuration management mechanism is not yet fully implemented and neither is that for AIX. Also, there is a large group of SVR 4.2 compatible functions that are not directly STREAMS related but are part of the DDI/DKI and should be implemented to provide abstraction from Linux internals as well as the ability to link binary modules.
    *moved*
    (Note that the ability to link binary modules has been moved to is own strbcm package.)
  • Linking of binary modules is not yet supported. This is the place (strcompat) where binary modules should be permitted to be loaded against either Linux STREAMS or Linux Fast-STREAMS, because the binary compatibility interface modules are defined here. There is the beginnings of an strconf script output to generate a C-language wrapper file that will link with a binary object file to generate a loadable module that could load under Linux STREAMS or Linux Fast-STREAMS. Note that there are a bunch of binary compatibility issues with Linux STREAMS in the first place (it cannot even be binary compatible with user programs written for 32bit architectures running on 64bit architectures). For fairly restricted use modules and drivers, a single binary object could run on both LiS and LfS.
    *moved*
    (Note that the ability to link binary modules has been moved to is own strbcm package.)
  • Documentation. The documentation is trailing a bit. I have thousands of manual pages written, however, some are sparse or incomplete. Also, the manual and the STREAMS Porting Guide needs a bunch of work.
    *todo*
    Did a bunch of work on the manual, however, there is still a lot of work on a STREAMS Porting Guide to be done.

6.7 History

For the latest developments with regard to history of changes, please see the ChangeLog file in the release package.

7 Installation

7.1 Repositories

The OpenSS7 STREAMS Compatibility package release can be accessed from the repositories of The OpenSS7 Project. For rpm(1) based systems, the package is available in a yum(8) repository based on repomd XML and may also be accessed using zypper(8) or yast(8). For dpkg(1) based systems, the package is available in a apt(8) repository.

By far the easiest (most repeatable and manageable) form for installing and using OpenSS7 packages is to install packages from the yum(8) or apt(8) repositories. If your distribution does not support yum(8), zypper(8), yast(8) or apt(8), then it is still possible to install the RPMs or DEBs from the repositories using rpm(1), dpkg(1); or by using wget(1) and then installing them from RPM or DEB using rpm(1) or dpkg(1) locally.

If binaries are not available for your distribution or specific kernel, but your distribution supports rpm(1) or dpkg(1), the next best method for installing and using OpenSS7 packages is to download and rebuild the source RPMs or DSCs from the repository. This can also be performed with yum(8), zypper(8), yast(8), apt(8); or directly using wget(1), rpm(1) or dpkg(1).

If your architecture does not support rpm(1) or dpkg(1) at all, or you have special needs (such as cross-compiling for embedded targets), the final resort method is to download, configure, build and install from tarball. In this later case, the easiest way to build and install OpenSS7 packages from tarball is to use the tarball for the OpenSS7 Master Package, openss7-0.9.2.G.

7.1.1 Repositories for YUM

To install or upgrade from the OpenSS7 repomd repositories, you will need a file in your /etc/yum.repo.d/ directory. This file can be obtained directly from the OpenSS7 repository, like so:

     $> REPOS="http://www.openss7.org/repos/rpms"
     $> wget $REPOS/centos/5.2/x86_64/repodata/openss7.repo
     $> sudo cp -f openss7.repo /etc/yum.repo.d/
     $> sudo yum makecache

This example assumes the the distribution is ‘centos’ and the distribution release is ‘5.2’ and the architecture requires is ‘x86_64’. Another example would be $REPOS/i686/suse/11.0/i686/repodata/openss7.repo, for using yum(8) with SUSE.

Once the repository is set up, OpenSS7 includes a number of virtual package definitions that eas the installation and removal of kernel modules, libraries and utilities. Downloading, configuring, building and installation for a single-kernel distribution is as easy as:

     $> sudo yum install strcompat

Removing the package is as easy as:

     $> sudo yum remove strcompat

If you have difficulty downloading the openss7.repo file, edit the following information into the file and place it into the /etc/yum.repo.d/openss7.repo file:

     -| [openss7]
     -| enabled = 1
     -| name = OpenSS7 Repository
     -| baseurl = http://www.openss7.org/repos/rpms/centos/5.2/x86_64
     -| gpgcheck = 1
     -| gpgkey = http://www.openss7.org/pubkey.asc

Note that it is also possible to point to these repositories as an additional installation source when installing CentOS, RedHat, Fedora, or others. You will have an additional STREAMS category from which to choose installation packages.

Some additional installation real or virtual package names and the installations they accomplish are as follows:

strcompat
This package can be used to install or remove the entire OpenSS7 STREAMS Compatibility package. When installing, kernel modules will be installed automatically for the highest version kernel on your system. When removing, all corresponding kernel modules will also be removed.
strcompat-devel
This package can be used to install or remove the development components of the OpenSS7 STREAMS Compatibility package. When installing, ‘strcompat’ and appropriate kernel module and kernel module development and debug packages will also be installed. When removing, the development package and all kernel module development and debug packages will also be removed.
strcompat-2.4.20-28.7
This package can be used to install or remove the package for a specific kernel version. When installing, the ‘strcompat’ package will also be installed if necessary. When removing the last kernel module package, the ‘strcompat’ package will also be removed.

Note that the version ‘2.4.20-28.7’ is just an example. Use the version returned by ‘$(uname -r)’ for the kernel for which you wish to install or remove the packages.

strcompat-2.4.20-28.7-devel
This package can be used to install or remove the development and debug packages for a specific kernel version. When installing, the ‘strcompat’ and ‘strcompat-devel’ packages will also be installed if necessary. When removing the development and debug for kernel modules for the last kernel, the ‘strcompat-devel’ package will also be removed.

Note that the version ‘2.4.20-28.7’ is just an example. Use the version returned by ‘$(uname -r)’ for the kernel for which you wish to install or remove the packages.

For assistance with specific RPMs, see Downloading the Binary RPM.

7.1.2 Repositories for APT

For assistance with specific DEBs, see Downloading the Debian DEB.

7.2 Downloading

The OpenSS7 STREAMS Compatibility package releases can be downloaded from the downloads page of The OpenSS7 Project. The package is available as a binary RPM (for popular architectures) a source RPM, Debian binary DEB and source DSC, or as a tar ball. If you are using a browsable viewer, you can obtain the OpenSS7 release of strcompat from the links in the sections that follow.

By far the easiest (most repeatable and manageable) form for installing and using OpenSS7 packages is to download and install individual packages from binary RPM or DEB. If binary RPMs or DEBs are not available for your distribution, but your distribution supports rpm(1) or dpkg(1), the next best method for installing and using OpenSS7 packages is to download and rebuild the source RPMs or DSCs.

If your architecture does not support rpm(1) or dpkg(1) at all, or you have special needs (such as cross-compiling for embedded targets), the final resort method is to download, configure, build and install from tarball. In this later case, the easiest way to build and install OpenSS7 packages from tarball is to use the tarball for the OpenSS7 Master Package, openss7-0.9.2.G.

7.2.1 Downloading with YUM

OpenSS7 repositories support yum(8) and zypper(8) in repomd XML format as well as YaST and YaST2 formats.

OpenSS7 includes virtual packages that ease the installation and removal of kernel modules, libraries and utilities. Downloading, configuration, building and installation for a signle-kernel distribution installation is as easy as:

     % sudo yum install strcompat

This and additional packages for installation are detailed as follows:

strcompat
Install this package if you need the runtime strcompat package.
          % sudo yum install strcompat

This will install the strcompat, strcompat-lib and strcompat-KVERSION RPMs, where ‘KVERSION’ is the highest version number kernel on your system.

Remove this package if you need to remove all vestages of the strcompat package.

          % sudo yum remove strcompat

This will remove the strcompat, strcompat-lib, strcompat-devel, strcompat-KVERSION and strcompat-devel-KVERSION RPMs for all kernels on your system.

strcompat-devel
Install this package if you need the development strcompat package.
          % sudo yum install strcompat-devel

This will install the strcompat, strcompat-lib, strcompat-devel, strcompat-KVERSION and strcompat-devel-KVERSION RPMs, where ‘KVERSION’ is the highest version number kernel on your system.

Remove this package if you do not need development capabilities for the strcompat package for any kernel.

          % sudo yum remove strcompat-devel

This will remove the strcompat-devel and strcompat-devel-KVERSION RPMs for all kernels on your system.

strcompat-2.4.20-28.7
Install this package if you need the runtime strcompat for kernel version ‘2.4.20-28.7’. The value ‘2.4.20-28.7’ is just an example. For the running kernel, you can install the runtime strcompat components with:
          % sudo yum install strcompat-$(uname -r)

This will install the strcompat, strcompat-lib and strcompat-2.4.20-28.7 RPMs, where ‘2.4.20-28.7’ is the kernel version specified.

Remove this package if you no longer need the runtime strcompat for kernel version ‘2.4.20-28.7’. The value ‘2.4.20-28.7’ is just an example. For the running kernel, you can remove the runtime strcompat components with:

          % sudo yum remove strcompat-$(uname -r)

This will remove the strcompat-2.4.20-28.7 and strcompat-devel-2.4.20-28.7 RPMs, where ‘2.4.20-28.7’ is the kernel version specified. Also, if this is the last kernel for which strcompat was installed, the strcompat strcompat-lib and strcompat-devel RPMs will also be removed.

Note that this is a virtual package name: the actual RPMs installed or removed from the system is a kernel module package whose precise name will depend upon the system being used.

strcompat-devel-2.4.20-28.7
Install this package if you need the development strcompat package for kernel version ‘2.4.20-28.7’. The value ‘2.4.20-28.7’ is just an example. For the running kernel, you can install the kernel development strcompat components with:
          % sudo yum install strcompat-devel-$(uname -r)

This will install the strcompat, strcompat-lib, strcompat-devel, strcompat-2.4.20-28.7 and strcompat-devel-2.4.20-28.7 RPMs, where ‘2.4.20-28.7’ is the kernel version specified.

Remove this package if you no longer need the development capabilities for the strcompat package for kernel version ‘2.4.20-28.7’. The value ‘2.4.20-28.7’ is just an example. For the running kernel, you can remove the kernel development strcompat components with:

          % sudo yum remove strcompat-devel-$(uname -r)

This will remove the strcompat-devel-2.4.20-28.7 RPMs, where ‘2.4.20-28.7’ is the kernel version specified. Also, if this is the last kernel for which strcompat was installed, the strcompat-devel RPMs will also be removed.

Note that this is a virtual package name: the actual RPMs installed or removed from the system is a kernel module package whose precise name will depend upon the system being used.

strcompat-lib
This package is an auxillary package that should be removed and inserted automatically by yum(8). In rare instances you might need to remove or install this package explicitly.

7.2.2 Downloading with APT

OpenSS7 repositries support apt(8) repositorie digests and signatures.

7.2.3 Downloading the Binary RPM

To install from binary RPM, you will need several of the RPM for a complete installation. Binary RPM fall into several categories. To download and install a complete package requires the appropriate RPM from each of the several categories below, as applicable. Some release packages do not provide RPMs in each of the several categories.

To install from Binary RPM, you will need all of the following kernel independent packages for your architecture, and one of the kernel-dependent packages from the next section.

Independent RPM

Independent RPM are dependent on neither the Linux kernel version, nor the STREAMS package. For example, the source package ‘strcompat-source-0.9.2.7-1.7.2.noarch.rpm’, is not dependent on kernel nor STREAMS package.

All of the following kernel and STREAMS independent RPM are required for your architecture. Binary RPMs listed here are for example only: additional binary RPMs are available from the downloads site. If your architecture is not available, you can build binary RPM from the source RPM (see see Building from the Source RPM).

Architecture Independent
strcompat-dev-0.9.2.7-1.7.2.noarch.rpm
The strcompat-dev package contains the device definitions necessary to run applications programs developed for OpenSS7 STREAMS Compatibility.28
strcompat-doc-0.9.2.7-1.7.2.noarch.rpm
The strcompat-doc package contains this manual in plain text, postscript, pdf and html forms, along with the meta-information from the strcompat package. It also contains all of the manual pages necessary for developing OpenSS7 STREAMS Compatibility applications and OpenSS7 STREAMS Compatibility STREAMS modules or drivers.
strcompat-init-0.9.2.7-1.7.2.noarch.rpm
The strcompat-init package contains the init scripts and provides the ‘postinst’ scripts necessary to create kernel module preloads and modules definitions for all kernel module ‘core’ subpackages.
strcompat-source-0.9.2.7-1.7.2.noarch.rpm
The strcompat-source package contains the source code necessary for building the OpenSS7 STREAMS Compatibility release. It includes the autoconf(1) configuration utilities necessary to create and distribute tarballs, rpm and deb/dsc. 29
Architecture Dependent
strcompat-devel-0.9.2.7-1.7.2.i686.rpm
The strcompat-devel package contains library archives for static compilation, header files to develop OpenSS7 STREAMS Compatibility modules and drivers. This also includes the header files and static libraries required to compile OpenSS7 STREAMS Compatibility applications programs.
strcompat-lib-0.9.2.7-1.7.2.i686.rpm
The strcompat-lib package contains the run-time shared libraries necessary to run application programs and utilities developed for the strcompat package. 30
STREAMS-Dependent RPM

STREAMS-Dependent RPM are dependent upon the specific STREAMS package being used, either Linux STREAMS or Linux Fast-STREAMS. Packages dependent upon Linux STREAMS will have LiS in the package name. Packages dependent upon Linux Fast-STREAMS will have streams in the package name. Note that some STREAMS-Dependent RPM are also Kernel-Dependent RPM as described below.

One of the following STREAMS-Dependent packages is required for your architecture. If your architecture is not on the list, you can build binary RPM from the source RPM (see see Building from the Source RPM).

strcompat-LiS-util-0.9.2.7-1.7.2.i686.rpm
The strcompat-LiS-util package provides administrative and configuration test utilities and commands associated with the OpenSS7 STREAMS Compatibility package. Because this package must link a STREAMS-specific library, it is a STREAMS-Dependent package. Use the strcompat-LiS-util package if you have LiS installed.
strcompat-streams-util-0.9.2.7-1.7.2.i686.rpm
The strcompat-streams-util package provides administrative and configuration test utilities and commands associated with the OpenSS7 STREAMS Compatibility package. Because this package must link a STREAMS-specific library, it is a STREAMS-Dependent package. Use the strcompat-streams-util package if you have streams installed.
Kernel-Dependent RPM

Kernel-Dependent RPM are dependent on specific Linux Kernel Binary RPM releases. Packages are provided for popular released RedHat kernels. Packages dependent upon RedHat or other kernel RPM will have the ‘_kversion’ kernel package version in the package name.

One of the following Kernel-Dependent packages is required for your architecture and kernel version. If your architecture or kernel version is not on the list, you can build binary RPM from the source RPM (see see Building from the Source RPM).31

strcompat-core-2.4.20-28.7-0.9.2.7-1.7.2.i686.rpm
The strcompat-core package contains the loadable kernel modules that depend only on the kernel. This package is heavily tied to the kernel for which it was compiled. This particular package applies to kernel version ‘2.4.20-28.7’.32
strcompat-info-2.4.20-28.7-0.9.2.7-1.7.2.i686.rpm
The strcompat-info package33 contains the module symbol version information for the core subpackage, above. It is possible to load this subpackage and compile modules that use the exported symbols without loading the actual kernel modules (from the core subpackage above). This package is heavily tied to the kernel for which it was compiled. This particular package applies to kernel version ‘2.4.20-28.7’.34
strcompat-LiS-core-2.4.20-28.7-0.9.2.7-1.7.2.i686.rpm
The strcompat-LiS-core package contains the kernel modules that provide the OpenSS7 STREAMS Compatibility STREAMS modules and drivers. This package is heavily tied to the STREAMS package and kernel for which it was compiled. This particular package applies to LiS (Linux STREAMS) on kernel version ‘2.4.20-28.7’.35
strcompat-streams-core-2.4.20-28.7-0.9.2.7-1.7.2.i686.rpm
The strcompat-streams-core package contains the kernel modules that provide the OpenSS7 STREAMS Compatibility STREAMS modules and drivers. This package is heavily tied to the STREAMS package and kernel for which it was compiled. This particular package applies to streams (Linux Fast-STREAMS) on kernel version ‘2.4.20-28.7’.36
strcompat-LiS-info-2.4.20-28.7-0.9.2.7-1.7.2.i686.rpm
The strcompat-LiS-info package37 contains the module symbol version information for the LiS-core subpackage, above. It is possible to load this subpackage and compile modules that use the exported symbols without loaded the actual kernel modules (from the LiS-core subpackage above). This package is heavily tied to the STREAMS package and kernel for which it was compiled. This particular package applies to LiS (Linux STREAMS) on kernel version ‘2.4.20-28.7’.38
strcompat-streams-info-2.4.20-28.7-0.9.2.7-1.7.2.i686.rpm
The strcompat-streams-info package39 contains the module symbol version information for the streams-core subpackage, above. It is possible to load this subpackage and compile modules that use the exported symbols without loaded the actual kernel modules (from the streams-core subpackage above). This package is heavily tied to the STREAMS package and kernel for which it was compiled. This particular package applies to streams (Linux Fast-STREAMS) on kernel version ‘2.4.20-28.7’.40
Configuration and Installation

To configure, build and install the binary RPM, See Configuring the Binary RPM.

7.2.4 Downloading the Debian DEB

To install from binary DEB, you will need several of the DEB for a complete installation. Binary DEB fall into several categories. To download and install a complete package requires the appropriate DEB from each of the several categories below, as applicable. Some release packages do not provide DEBs in each of the several categories.

To install from Binary DEB, you will need all of the following kernel independent packages for your architecture, and one of the kernel-dependent packages from the next section.

Independent DEB

Independent DEB are dependent on neither the Linux kernel version, nor the STREAMS package. For example, the source package ‘strcompat-source_0.9.2.7-0_i386.deb’, is not dependent on kernel nor STREAMS package.

All of the following kernel and STREAMS independent DEB are required for your architecture. Binary DEBs listed here are for example only: additional binary DEBs are available from the downloads site. If your architecture is not available, you can build binary DEB from the Debian DSC (see see Building from the Debian DSC).

Architecture Independent
strcompat-dev_0.9.2.7-0_all.deb
The strcompat-dev package contains the device definitions necessary to run applications programs developed for OpenSS7 STREAMS Compatibility. 41
strcompat-doc_0.9.2.7-0_all.deb
The strcompat-doc package contains this manual in plain text, postscript, pdf and html forms, along with the meta-information from the strcompat package. It also contains all of the manual pages necessary for developing OpenSS7 STREAMS Compatibility applications and OpenSS7 STREAMS Compatibility STREAMS modules or drivers.
strcompat-init_0.9.2.7-0_all.deb
The strcompat-init package contains the init scripts and provides the postinst scripts necessary to create kernel module preloads and modules definitions for all kernel module ‘core’ subpackages.
strcompat-source_0.9.2.7-0_all.deb
The strcompat-source package contains the source code necessary for building the OpenSS7 STREAMS Compatibility release. It includes the autoconf(1) configuration utilities necessary to create and distribute tarballs, rpms and deb/dscs. 42
Architecture Dependent
strcompat-devel_0.9.2.7-0_i386.deb
The strcompat-devel package contains library archives for static compilation, header files to develop OpenSS7 STREAMS Compatibility modules and drivers. This also includes the header files and static libraries required to compile OpenSS7 STREAMS Compatibility applications programs.
strcompat-lib_0.9.2.7-0_i386.deb
The strcompat-lib package contains the run-time shared libraries necessary to run application programs and utilities developed for the strcompat package. 43
STREAMS-Dependent DEB

STREAMS-Dependent DEB are dependent upon the specific STREAMS package being used, either Linux STREAMS or Linux Fast-STREAMS. Packages dependent upon Linux STREAMS will have LiS in the package name. Packages dependent upon Linux Fast-STREAMS will have streams in the package name. Note that some STREAMS-Dependent DEB are also Kernel-Dependent DEB as described below.

One of the following STREAMS-Dependent packages is required for your architecture. If your architecture is not on the list, you can build binary DEB from the Debian DSC (see see Building from the Debian DSC).

strcompat-LiS-util_0.9.2.7-0_i386.deb
The strcompat-LiS-util package provides administrative and configuration test utilities and commands associated with the OpenSS7 STREAMS Compatibility package. Because this package must link a STREAMS-specific library, it is a STREAMS-Dependent package. Use the strcompat-LiS-util package if you have LiS installed.
strcompat-streams-util_0.9.2.7-0_i386.deb
The strcompat-streams-util package provides administrative and configuration test utilities and commands associated with the OpenSS7 STREAMS Compatibility package. Because this package must link a STREAMS-specific library, it is a STREAMS-Dependent package. Use the strcompat-streams-util package if you have streams installed.
Kernel-Dependent DEB

Kernel-Dependent DEB are dependent on specific Linux Kernel Binary DEB releases. Packages are provided for popular released Debian kernels. Packages dependent upon Debian or other kernel DEB will have the ‘_kversion’ kernel package version in the package name.

One of the following Kernel-Dependent packages is required for your architecture and kernel version. If your architecture or kernel version is not on the list, you can build binary DEB from the source DEB (see see Building from the Debian DSC).44

strcompat-core-2.4.20-28.7_0.9.2.7-0_i386.deb
The strcompat-core package contains the loadable kernel modules that depend only on the kernel. This package is heavily tied to the kernel for which it was compiled. This particular package applies to kernel version ‘2.4.20-28.7’.45
strcompat-info-2.4.20-28.7_0.9.2.7-0_i386.deb
The strcompat-info package46 contains the module symbol version information for the core subpackage, above. It is possible to load this subpackage and compile modules that use the exported symbols without loading the actual kernel modules (from the core subpackage above). This package is heavily tied to the kernel for which it was compiled. This particular package applies to kernel version ‘2.4.20-28.7’.47
strcompat-LiS-core-2.4.20-28.7_0.9.2.7-0_i386.deb
The strcompat-LiS-core package contains the kernel modules that provide the OpenSS7 STREAMS Compatibility STREAMS modules and drivers. This package is heavily tied to the STREAMS package and kernel for which it was compiled. This particular package applies to LiS (Linux STREAMS) on kernel version ‘2.4.20-28.7’.48
strcompat-streams-core-2.4.20-28.7_0.9.2.7-0_i386.deb
The strcompat-streams-core package contains the kernel modules that provide the OpenSS7 STREAMS Compatibility STREAMS modules and drivers. This package is heavily tied to the STREAMS package and kernel for which it was compiled. This particular package applies to streams (Linux Fast-STREAMS) on kernel version ‘2.4.20-28.7’.49
strcompat-LiS-info-2.4.20-28.7_0.9.2.7-0_i386.deb
The strcompat-LiS-info package50 contains the module symbol version information for the LiS-core subpackage, above. It is possible to load this subpackage and compile modules that use the exported symbols without loaded the actual kernel modules (from the LiS-core subpackage above). This package is heavily tied to the STREAMS package and kernel for which it was compiled. This particular package applies to LiS (Linux STREAMS) on kernel version ‘2.4.20-28.7’.51
strcompat-streams-info-2.4.20-28.7_0.9.2.7-0_i386.deb
The strcompat-streams-info package52 contains the module symbol version information for the streams-core subpackage, above. It is possible to load this subpackage and compile modules that use the exported symbols without loaded the actual kernel modules (from the streams-core subpackage above). This package is heavily tied to the STREAMS package and kernel for which it was compiled. This particular package applies to streams (Linux Fast-STREAMS) on kernel version ‘2.4.20-28.7’.53
Configuration and Installation

To configure, build and install the Debian DEB, See Configuring the Debian DEB.

7.2.5 Downloading the Source RPM

If you cannot obtain a binary RPM for your architecture, or would like to roll you own binary RPM, download the following source RPM.

strcompat-0.9.2.7-1.src.rpm
This is the source RPM for the package. From this source RPM it is possible to build binary RPM for any supported architecture and for any 2.4 or 2.6 kernel, for either Linux STREAMS or Linux Fast-STREAMS.
Configuration

To configure the source RPM, See Configuring the Source RPM.

7.2.6 Downloading the Debian DSC

If you cannot obtain a binary DEB for your architecture, or would like to roll your own DEB, download the following Debian DSC.

strcompat_0.9.2.7-0.dsc
strcompat_0.9.2.7-0.tar.gz
This is the Debian DSC for the package. From this Debian DSC it is possible to build binary DEB for any supported architecture and for any 2.4 or 2.6 kernel, for either Linux STREAMS or Linux Fast-STREAMS.
Configuration

To configure the source RPM, See Configuring the Debian DSC.

7.2.7 Downloading the Tar Ball

For non-rpm(1) and non-dpkg(1) architectures, download the tarball as follows:

strcompat-0.9.2.7.tar.gz
strcompat-0.9.2.7.tar.bz2
These are the tar(1) balls for the release. These tar(1) balls contain the autoconf(1) distribution which includes all the source necessary for building and installing the package. These tarballs will even build Source RPM and Binary RPM on rpm(1) architectures and Debian DSC and DEB on dpkg(1) architectures.

The tar ball may be downloaded easily with wget(1) as follows:

     % wget http://www.openss7.org/strcompat-0.9.2.7.tar.bz2

or

     % wget http://www.openss7.org/strcompat-0.9.2.7.tar.gz

Note that you will need an OpenSS7 Project user name and password to download release candidates (which are only available to subscribers and sponsors of the OpenSS7 Project).

Unpacking the Archive

After downloading one of the tar balls, unpack the archive using one of the following commands:

     % wget http://www.openss7.org/strcompat-0.9.2.7.tar.gz
     % tar -xzvf strcompat-0.9.2.7.tar.gz

or

     % wget http://www.openss7.org/strcompat-0.9.2.7.tar.bz2
     % tar -xjvf strcompat-0.9.2.7.tar.bz2

Either will create a subdirectory name strcompat-0.9.2.7 containing all of the files and subdirectories for the strcompat package.

Configuration

To configure and install the tar ball, See Configuring the Tar Ball.

7.2.8 Downloading from CVS

If you are a subscriber or sponsor of The OpenSS7 Project with CVS archive access privileges then you can download release, mid-release or release candidate versions of the strcompat package from the project CVS archive.

The OpenSS7 STREAMS Compatibility package is located in the strcompat module of /var/cvs. For release tag information, see Releases.

To access the archive from the project CVS pserver, use the following commands to check out a version from the archive:

     % export CVSROOT='-d:pserver:username@cvs.openss7.com:2401/var/cvs'
     % cvs login
     Password: *********
     % cvs co -r strcompat_0.9.2.7 strcompat
     % cvs logout

It is, of course, possible to check out by date or by other criteria. For more information, see cvs(1).

Preparing the CVS Working Directory

Although public releases of the strcompat package do not require reconfiguration, creating a configurable directory from the CVS archive requires tools not normally distributed with the other releases.

The build host requires the following GNU tools:

  • m4 1.4.12
  • autoconf 2.63
  • automake 1.10.1
  • libtool 2.2.4
  • gettext 0.17
  • flex 2.5.33
  • bison 2.3

Most desktop development GNU/Linux distributions wil have these tools; however, some non-development or server-style installations might not and they must be installed separately.54

Also, these tools can be acquired from the FSF website in the free software directory, and also at the following locations:

It should be stressed that, in particular, the autoconf(1), and automake(1), must be at version releases 2.63 and 1.10.1. The versions normally distributed in some mainstream GNU/Linux distributions are, in fact, much older than these versions.55 GNU version of these packages configured and installed to default directories will install in /usr/local/ allowing them to coexist with distribution installed versions.

For building documentation, the build host also requires the following documentation tools:

  • gs 6.51 or ghostscript 6.51, or newer.
  • tetex 3.0 or texlive 2007, or newer.
  • texinfo 4.13a or newer.
  • transfig 3.2.3d or newer.
  • imagemagick 5.3.8 or ImageMagick 5.3.8, or newer.
  • groff 1.17.2 or newer.
  • gnuplot 3.7 or newer.
  • latex2html 1.62 or newer.

Most desktop GNU/Linux distributions will have these tools; however, some server-style installations (e.g. Ubuntu-server, SLES 9 or Fedora 6 or 7) will not and they must be installed separately.56

Note that texinfo 4.12 must not be used as it breaks the build process.

For uncooked manual pages, the entire groff(1) package is required on older Debian and Ubuntu systems (the base package did not include grefer(1) which is used extensively by uncooked manual pages). The following will get what you need on older systems:

     Debian: % apt-get install groff_ext
     Ubuntu: % apt-get install groff

On newer systems, simply:

     % apt-get install groff

In addition, the build host requires a complete tool chain for compiling for the target host, including kernel tools such as genksyms(8) and others.

If you wish to package rpms on an rpm(1) system, or debs on a dpkg(1) system, you will need the appropriate tool chain. Systems based on rpm(1) typically have the necessary tool chain available, however, dpkg(1) systems do not. The following on a Debian or Ubuntu system will get what you need:

     % apt-get install debhelper
     % apt-get install fakeroot

To generate a configuration script and the necessary scriptlets required by the GNU autoconf(1) system, execute the following commands on the working directory:

     % autoreconf -fiv strcompat

where, strcompat is the name of the directory to where the working copy was checked out under the previous step. This command generates the configure script and other missing pieces that are normally distributed with the release Tar Balls, SRPMs and DSCs.

Make sure that ‘autoreconf --version’ returns ‘2.63’. Otherwise, you may need to perform something like the following:

     % PATH="/usr/local/bin:$PATH"
     % autoreconf -fiv strcompat

After reconfiguring the directory, the package can then be configured and built using the same instructions as are used for the Tar Ball, see Configuring the Tar Ball, and Building from the Tar Ball.

Do note, however, that make(1) will rebuild the documentation that is normally released with the package. Additional tools may be necessary for building the documentation. To avoid building and installing the documentation, use the --disable-devel or --disable-docs option to configure described in Configuring the Tar Ball.

When configuring the package in a working directory and while working a change-compile-test cycle that involves configuration macros or documentation, I find it of great advantage to invoke the GNU configure options --enable-maintainer-mode, --enable-dependency-tracking and --disable-devel. The first of these three options will add maintainer-specific targets to any generated Makefile, the second option will invoke automatic dependency tracking within the Makefile so rebuilds after changes to macro, source or documentation files will be automatically rebuilt; and the last option will suppress rebuilding and reinstalling documentation manual pages and header files. Header files will still be available under the /usr/src directory.

7.3 Configuration

7.3.1 Configuring the Binary RPM

In general the binary RPM do not require any configuration, however, during installation it is possible to relocate some of the installation directories. This allows some degree of customization. Relocations that are available on the binary RPM are as follows:

strcompat-LiS-core-2.4.20-28.7-0.9.2.7-1.7.2.i686.rpm
strcompat-streams-core-2.4.20-28.7-0.9.2.7-1.7.2.i686.rpm
/lib/modules/2.4.20-28.7
This relocatable directory contains the kernel modules that provide the strcompat STREAMS core, drivers and modules.57

strcompat-LiS-info-2.4.20-28.7-0.9.2.7-1.7.2.i686.rpm
strcompat-streams-info-2.4.20-28.7-0.9.2.7-1.7.2.i686.rpm
/usr/include/strcompat/2.4.20-28.7
This relocatable directory contains the kernel module exported symbol information that allows other kernel modules to be compiled against the correct version of the strcompat package.58

strcompat-dev-0.9.2.7-1.7.2.i686.rpm
(not relocatable)
strcompat-devel-0.9.2.7-1.7.2.i686.rpm
/usr/lib
This relocatable directory contains strcompat libraries.
/usr/include/strcompat
This relocatable directory contains strcompat header files.

strcompat-doc-0.9.2.7-1.7.2.i686.rpm
/usr/share/doc
This relocatable directory contains all package specific documentation (including this manual). The subdirectory in this directory is the strcompat-0.9.2.7 directory.
/usr/share/info
This relocatable directory contains info files (including the info version of this manual).
/usr/share/man
This relocatable directory contains manual pages.

strcompat-LiS-lib-0.9.2.7-1.7.2.i686.rpm
strcompat-streams-lib-0.9.2.7-1.7.2.i686.rpm
/usr/lib
This relocatable directory contains the run-time shared libraries necessary to run applications programs and utilities developed for OpenSS7 STREAMS Compatibility.
/usr/share/locale
This relocatable directory contains the locale information for shared library files.

strcompat-source-0.9.2.7-1.7.2.i686.rpm
/usr/src
This relocatable directory contains the source code.

strcompat-LiS-util-0.9.2.7-1.7.2.i686.rpm
strcompat-streams-util-0.9.2.7-1.7.2.i686.rpm
/usr/bin
This relocatable directory contains binary programs and utilities.
/usr/sbin
This relocatable directory contains system binary programs and utilities.
/usr/libexec
This relocatable directory contains test programs.
/etc
This relocatable directory contains init scripts and configuration information.
Installation

To install the binary RPM, See Installing the Binary RPM.

7.3.2 Configuring the Debian DEB

In general the binary DEB do not require any configuration.

Installation

To install the Debian DEB, See Installing the Debian DEB.

7.3.3 Configuring the Source RPM

When building from the source RPM (see Building from the Source RPM), the rebuild process uses a number of macros from the user's .rpmmacros file as described in rpm(8).

Following is an example of the ~/.rpmmacros file that I use for rebuilding RPMS:

     #
     # RPM macros for building rpms
     #
     
     %vendor OpenSS7 Corporation
     %distribution OpenSS7
     %disturl http://www.openss7.org/
     %packager Brian Bidulock <bidulock@openss7.org>
     %url http://www.openss7.org/
     
     %_signature gpg
     %_gpg_path /home/brian/.gnupg
     %_gpg_name openss7@openss7.org
     %_gpgbin /usr/bin/gpg
     
     %_source_payload w9.bzdio
     %_binary_payload w9.bzdio
     
     %_unpackaged_files_terminate_build 1
     %_missing_doc_files_terminate_build 1
     %_use_internal_dependency_generator 0
     %_repackage_all_erasures 0
     %_rollback_transaction_on_failure 0
     
     %configure2_5x %configure
     %make make
     

When building from the source RPM (see Building from the Source RPM), it is possible to pass a number of additional configuration options to the rpmbuild(1) process.

The additional configuration options are described below.

Note that distributions that use older versions of rpm do not have the --with or --without options defined. To achieve the same effect as:

     --with someparm=somearg

do:

     --define "_with_someparm --with-someparm=somearg"

This is a generic description of common rpmbuild(1) options. Not all rpmbuild(1) options are applicable to all SRPMs. Options that are kernel module specific are only applicable to SRPMs that build kernel modules. STREAMS options are only applicable to SRPMs that provide or require STREAMS.

--define "_kversion $PACKAGE_KVERSION"
Specifies the kernel version other than the running kernel for which to build. If _kversion is not defined when rebuilding, the environment variable PACKAGE_KVERSION is used. If the environment variable PACKAGE_KVERSION is not defined, then the version of the running kernel (i.e. discovered with ‘uname -r’) is used as the target version for kernel-dependent packages. This option can also be defined in an .rpmspec file using the macro name ‘_kversion’.
--with checks
--without checks
Enable or disable preinstall checks. Each packages supports a number of preinstall checks that can be performed by invoking the ‘check’ target with automake(1). These currently consist of checking each kernel module for unresolved kernel symbols, checking for documentation for exported kernel module symbols, checking for documentation for exported library symbols, checking for standard options for build and installable programs, checking for documentation for built and installable programs. Normally these checks are only run in maintainer mode, but can be enabled and disabled with this option.
--with k-optimize=HOW
--without k-optimize
Specify ‘HOW’ optimization, normal, size, speed or quick. size compiles kernel modules -Os, speed compiles kernel modules -O3, and quick compiles kernel modules -O0. The default is normal. Use with care.
--with cooked-manpages
--without cooked-manpages
Some systems do not like grefer(1) references in manual pages.59 This option will cook soelim(1), refer(1), tbl(1) and pic(1) commands from the manual pages and also strip groff(1) comments. The default is to leave manual pages uncooked: they are actually smaller that way.
--with public
--without public
Release public packages or private packages. This option has no effect on the strcompat package. The default is to release public packages.
--with k-debug
--without k-debug
Specifies whether kernel debugging is to be performed on the build kernel modules. Mutually exclusive with test and safe below. This has the effect of removing static and inline attributes from functions and invoking all debugging macros in the code. The default is to not perform kernel debugging.
--with k-test
--without k-test
Specifies whether kernel testing is to be performed. Mutually exclusive with debug above and safe below. This has the effect of removing static and inline attributes from functions and invoking most debugging macros in the code. The default is to not perform kernel testing.
--with k-safe
--without k-safe
Specifies whether kernel saftey is to be performed. Mutually exclusive with debug and test above. This has the effect of invoking some more pedantic assertion macros in the code. The default is not to apply kernel safety.
--with k-inline
--without k-inline
Specifies whether kernel inline functions are to be placed inline. This has the effect of adding the -finline-functions flag to CFLAGS for compiling kernel modules. Linux 2.4 kernels are normally compiled -O2 which does not respect the inline directive. This compiles kernel modules with -finline-functions to get closer to -O3 optimization. For better optimization controls, See Configuring the Tar Ball.
--with k-modversions
--without k-modversions
Specifies whether kernel symbol versions are to be applied to symbols exported by package kernel modules. The default is to version exported module symbols. This package does not export symbols so this option has no effect.
--with devfs
--without devfs
Specifies whether the build is for a device file system daemon enabled system with autoloading, or not. The default is to build for devfsd(1) autoloading when CONFIG_DEVFS_FS is defined in the target kernel. The ‘rebuild’ target uses this option to signal to the RPM spec file that the ‘dev’ subpackage need not be built. This option does not appear when the package has no devices.
--with devel
--without devel
Specifies whether to build development environment packages such as those that include header files, static libraries, manual pages and texinfo(1) documentation. The default is to build development environment packages. This option can be useful when building for an embedded target where only the runtime components are desired.
--with docs
--without docs
Specifies whether to build and install major documentation such manual pages and texinfo(1) documentation. The default is to build and install documentation. This option can be useful when building for an embedded target where only the runtime and static compile components are desired, but not major documentation. This option does not override the setting of --without devel.
--with tools
--without tools
Specifies whether user space packages are to be built. The default is to build user space packages. This option can be useful when rebuilding for multiple architectures and target kernels. The ‘rebuildautomake(1) target uses this feature when rebuilding for all available architectures and kernels, to rebuild user packages once per architecture instead of once per kernel.
--with modules
--without modules
Specifies whether kernel modules packages are to be built. The default is to build kernel module packages. This option can be useful when rebuilding for multiple architectures and target kernels. The ‘rebuildautomake(1) target uses this feature to rebuild for all available architectures and kernels.
--with lis
--without lis
Specifies that the package is to be rebuilt against Linux STREAMS. The default is to automatically identify whether LiS or streams is loaded on the build system and build accordingly.
--with lfs
--without lfs
Specifies that the package is to be rebuilt against Linux Fast-STREAMS. The default is to automatically identify whether LiS or streams is loaded on the build system and build accordingly.

In addition, the following rpm options, specific to the OpenSS7 STREAMS Compatibility package are available:

--without compat-os7
Disable OpenSS7 compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the OpenSS7 documentation so that STREAMS drivers and modules written to OpenSS7 specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for OpenSS7 will require porting in more respects. This option defaults to ‘enabled’.
--without compat-svr3
Disable UNIX SVR 3.2 compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the UNIX SVR 3.2 documentation so that STREAMS drivers and modules written to UNIX SVR 3.2 specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for UNIX SVR 3.2 will require porting in more respects. This option defaults to ‘enabled’.
--without compat-svr4
Disable UNIX SVR 4.2 MP compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the UNIX SVR 4.2 MP documentation so that STREAMS drivers and modules written to UNIX SVR 4.2 MP specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for UNIX SVR 4.2 MP will require porting in more respects. This option defaults to ‘enabled’.
--without compat-mps
Disable Mentat Portable STREAMS compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the Mentat Portable STREAMS documentation so that STREAMS drivers and modules written to Mentat Portable STREAMS specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for Mentat Portable STREAMS will require porting in more respects. This option defaults to ‘enabled’.
--without compat-sol8
Disable Solaris 8 compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the Solaris 8 documentation so that STREAMS drivers and modules written to Solaris 8 specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for Solaris 8 will require porting in more respects. This option defaults to ‘enabled’.
--without compat-uw7
Disable UnixWare 7 compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the UnixWare 7 documentation so that STREAMS drivers and modules written to UnixWare 7 specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for UnixWare 7 will require porting in more respects. This option defaults to ‘enabled’.
--without compat-osf
Disable OSF/1.2 compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the OSF/1.2 documentation so that STREAMS drivers and modules written to OSF/1.2 specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for OSF/1.2 will require porting in more respects. This option defaults to ‘enabled’.
--without compat-aix
Disable AIX 5L Version 5.1 compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the AIX 5L Version 5.1 documentation so that STREAMS drivers and modules written to AIX 5L Version 5.1 specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for AIX 5L Version 5.1 will require porting in more respects. This option defaults to ‘enabled’.
--without compat-hpux
Disable HPUX STREAMS/UX compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the HPUX STREAMS/UX documentation so that STREAMS drivers and modules written to HPUX STREAMS/UX specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for HPUX STREAMS/UX will require porting in more respects. This option defaults to ‘enabled’.
--without compat-irix
Disable IRIX compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the IRIX documentation so that STREAMS drivers and modules written to IRIX specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for IRIX will require porting in more respects. This option defaults to ‘enabled’.
--with compat-lis
--without compat-lis
Disable LiS compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the LiS documentation so that STREAMS drivers and modules written to LiS specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for LiS will require porting in more respects. This option defaults to ‘enabled’ when compiled with Linux Fast STREAMS, ‘disabled’ when compiled with Linux STREAMS.
--with compat-lfs
--without compat-lfs
Disable Linux Fast STREAMS compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the Linux Fast STREAMS documentation so that STREAMS drivers and modules written to Linux Fast STREAMS specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for Linux Fast STREAMS will require porting in more respects. This option defaults to ‘enabled’ when compiled with Linux STREAMS, ‘disabled’ when compiled with Linux Fast STREAMS.
--without compat-mac
Disable MacOT compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the MacOT documentation so that STREAMS drivers and modules written to MacOT specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for MacOT will require porting in more respects. This option defaults to ‘enabled’.

In general, the default values of these options are sufficient for most purposes and no options need be provided when rebuilding the Source RPMs.

Build

To build from the source RPM, See Building from the Source RPM.

7.3.4 Configuring the Debian DSC

The Debian DSC can be configured by passing options in the environment variable BUILD_DEBOPTIONS. The options placed in this variable take the same form as those passed to the configure script, See Configuring the Tar Ball. For an example, See Building from the Debian DSC.

Build

To build from the Debian DSC, See Building from the Debian DSC.

7.3.5 Configuring the Tar Ball

All of the normal GNU autoconf(1) configuration options and environment variables apply. Additional options and environment variables are provided to tailor or customize the build and are described below.

7.3.5.1 Configure Options

This is a generic description of common configure options that are in addition to those provided by autoconf(1), automake(1), libtool(1) and gettext(1).

Not all configure options are applicable to all release packages. Options that are kernel module specific are only applicable to release packages that build kernel modules. STREAMS options are only applicable to release packages that provide or require STREAMS.

Following are the additional configure options, their meaning and use:

--enable-checks
--disable-checks
Enable or disable preinstall checks. Each release package supports a number of preinstall checks that can be performed by invoking the ‘check’ target with make(1). These currently consist of checking each kernel module for unresolved kernel symbols, checking for documentation for exported kernel module symbols, checking for documentation for exported library symbols, checking for standard options for build and installable programs, checking for documentation for built and installable programs. Normally these checks are only run in maintainer mode, but can be enabled and disabled with this option.
--enable-autotest
--disable-autotest
Enable or disable pre- and post-installation testing. Each release package supports a number of autotest test suites that can be performed by invoking the ‘installcheck’ target with make(1). These currently consist of running installed modules, commands and binaries against a number of specific test cases. Normally these checks are only run in maintainer mode, but can be enabled and disabled with this option.
--disable-compress-manpages
Compress manual pages with ‘gzip -9’ or ‘bzip2 -9’ or leave them uncompressed. The default is to compress manual pages with ‘gzip -9’ or ‘bzip2 -9’ if a single compressed manual page exists in the target installation directory (--mandir). This disables automatic compression.
--disable-public
Disable public release. This option is not usable on public releases and only has a usable effect on OpenSS7 STREAMS Compatibility when the package is acquired from CVS. In particular, the STREAMS SS7/VoIP/ISDN/SIGTRAN Stacks (strss7-0.9a.8) release package has a large number of non-public components. Specifying this option will cause the package to build and install all private release components in addition to the public release components. This option affects all release packages. Most release packages do not have private release components.
--disable-initscripts
Disables the installation of init scripts. The default is to configure and install init scripts and their associated configuration files.

Although the default is to install init scripts, installation attempts to detect a System V init script configuration, and if one is not found, the init scripts are installed into the appropriate directories, but the symbolic links to the run level script directories are not generated and the script is not invoked. Therefore, it is safe to leave this option unchanged, even on distributions that do not support System V init script layout.

--disable-32bit-libs
Disables the build and install of 32-bit compatibility libraries and test binaries on 64-bit systems that support 32-bit compatibility. The default is to build and install 32-bit compatibility libraries and test binaries. This option can be usefule when configuring for an embedded target where only native shared libraries and binaries are desired.
--disable-devel
Disables the installation of development environment components such as header files, static libraries, manual pages and texinfo(1) documentation. The default is to install development environment components. This option can be useful when configuring for an embedded target where only the runtime components are desired, or when performing a edit-compile-test cycle.
--disable-docs
Disables the build and installation of major documentation such manual pages and texinfo(1) documentation. The default is to build and install documentation. This option can be useful when building for an embedded target where only the runtime and static compile components are desired, but not major documentation. This option does not override the setting of --disable-devel.
--enable-tools
Specifies whether user space programs and libraries are to be built and installed. The default is to build and install user space programs and libraries. This option can be useful when rebuilding for multiple architectures and target kernels, particularly under rpm(1) or dpkg(1). The ‘rebuildautomake(1) target uses this feature when rebuilding RPMs for all available architectures and kernels, to rebuild user packages once per architecture instead of once per kernel.
--enable-modules
Specifies whether kernel modules are to be built and installed. The default is to build and install kernel modules. This option can be useful when rebuilding for multiple architectures and target kernels, particularly under rpm(1) or dpkg(1). The ‘rebuildautomake(1) target uses this feature to rebuild for all available architectures and kernels. This option has no effect for release packages that do not provide kernel modules.
--enable-arch
Specifies whether architectural dependent package components are to be built and installed. This option can be useful when rebuilding for multiple architectures and target kernels, particularly under dpkg(1). The default is to configure, build and install architecture dependent package components. This option has no effect for release packages that do not provide architecture dependent components.
--enable-indep
Specifies whether architecture independent package components are to be built and installed. This option can be useful when rebuilding for multiple architectures and target kernels, particularly under dpkg(1). The default is to configure, build and install architecture independent package components. This options has no effect for release packages that do not provide architecture independent components.
--enable-k-inline
Enable kernel inline functions. Most Linux kernels build without -finline-functions. This option adds the -finline-functions and -Winline flags to the compilation of kernel modules. Use with care. This option has no effect for release packages that do not provide kernel modules.
--enable-k-safe
Enable kernel module run-time safety checks. Specifies whether kernel safety is to be performed. This option is mutually exclusive with --enable-k-test and --enable-k-debug below. This has the effect of invoking some more pedantic assertion macros in the code. The default is not to apply kernel safety. This option has no effect for release packages that have are no kernel modules.
--enable-k-test
Enable kernel module run-time testing. Specifies whether kernel testing is to be performed. This option is mutually exclusive with --enable-k-safe above and --enable-k-debug below. This has the effect of remove static and inline attributes from functions and invoking most non-performance affecting debugging macros in the code. The default is not to perform kernel testing. This option has no effect for release packages that do not provide kernel modules.
--enable-k-debug
Enable kernel module run-time debugging. Specifies whether kernel debugging is to be performed. This option is mutually exclusive with --enable-k-safe and --enable-k-test above. This has the effect of removing static and inline attributes from functions and invoking all debugging macros in the code (including performance-affecting debug macros). The default is to not perform kernel debugging. This option has no effect for release packages that do not provide kernel modules.
--disable-k-modversions
Disable module versions on strcompat symbols. Specifies whether kernel symbol versions are to be used on symbols exported from built strcompat modules. The default is to provide kernel symbol versions on all exported symbols. This option has no effect for release packages that do not provide kernel modules.
--enable-devfs
--disable-devfs
Specifies whether the build is for a device file system daemon enabled system with autoloading, or not. The default is to build for devfsd(8) autoloading when CONFIG_DEVFS_FS is defined in the target kernel. The ‘reuildautomake(1) target uses this option to signal to the RPM spec file that the ‘dev’ subpackage need not be built. This option has no effect for release packages that do not provide devices.
--with-gpg-user=GNUPGUSER
Specify the gpg(1)GNUPGUSER’ for signing RPMs and tarballs. The default is the content of the environment variable GNUPGUSER. If unspecified, the gpg(1) program will normally use the user name of the account invoking the gpg(1) program. For building source RPMs, the RPM macro ‘_gpg_name’ will override this setting.
--with-gpg-home=GNUPGHOME
Specify the ‘GNUPGHOME’ directory for signing RPMs and tarballs. The default is the user's ~/.gpg directory. For building source RPMs, the RPM macro ‘_gpg_path’ will override this setting.
--with-pkg-epoch=EPOCH
Specifies the epoch for the package. This is neither used for rpm(1) nor dpkg(1) packages, it applies to the tarball release as a whole. The default is the contents of the .pkgepoch file in the release package source directory or, if that file does not exist, zero (0).
--with-pkg-release=RELEASE
Specifies the release for the package. This is neither used for rpm(1) nor dpkg(1) packages, it applies to the tarball release as a whole. The default is the contents of the .pkgrelease file in the release package source directory or, if that file does not exist, one (1). This is the number after the last point in the package version number.
--with-pkg-distdir=DIR
Specifies the distribution directory for the package. This is used by the maintainer for building distributions of tarballs. This is the directory into which archives are copied for distribution. The default is the top build directory.
--with-cooked-manpages
Convert manual pages to remove macro dependencies and grefer(1) references. Some systems do not like grefer(1) references in manual pages.60 This option will cook soelim(1), refer(1), tbl(1) and pic(1) commands from the manual pages and also strip groff(1) comments. The default is to leave manual pages uncooked (they are actually smaller that way).
--with-rpm-epoch=PACKAGE_EPOCH
Specify the ‘PACKAGE_EPOCH’ for the RPM spec file. The default is to use the RPM epoch contained in the release package file .rpmepoch.
--with-rpm-release=PACKAGE_RPMRELEASE
Specify the ‘PACKAGE_RPMRELEASE’ for the RPM spec file. The default is to use the RPM release contained in the release package file .rpmrelease.
--with-rpm-extra=PACKAGE_RPMEXTRA
Specify the ‘PACKAGE_RPMEXTRA’ extra release information for the RPM spec file. The default is to use the RPM extra release information contained in the release package file .rpmextra. Otherwise, this value will be determined from automatic detection of the RPM distribution.
--with-rpm-topdir=PACKAGE_RPMTOPDIR
Specify the ‘PACKAGE_RPMTOPDIR’ top directory for RPMs. If specified with a null ‘PACKAGE_RPMTOPDIR’, the default directory for the RPM distribution will be used. If this option is not provided on the command line, the top build directory will be used as the RPM top directory as well.
--with-deb-epoch=EPOCH
Specify the ‘PACKAGE_DEBEPOCH’ for the DEB control file. The default is to use the DEB epoch contained in the release package file .debepoch.
--with-deb-release=RELEASE
Specify the ‘PACKAGE_DEBRELEASE’ for the DEB control file. The default is to use the DEB release contained in the release package file .debrelease.
--with-deb-topdir=DIR
Specify the ‘PACKAGE_DEBTOPDIR’ top directory for DEBs. If specified with a null ‘PACKAGE_DEBTOPDIR’, the default directory for the DEB distribution will be used. If this option is not provided on the command line, the top build directory will be used as the DEB top directory as well.
--with-k-release=PACKAGE_KRELEASE
Specify the ‘PACKAGE_KRELEASE’ release of the Linux kernel for which the build is targeted. When not cross compiling, if this option is not set, the build will be targeted at the kernel running in the build environment (e.g., ‘uname -r’). When cross-compiling this option must be specified or the configure script will generate an error and terminate.
--with-k-linkage=PACKAGE_KLINKAGE
Specify the ‘PACKAGE_KLINKAGE’ for kernel module linkage. This can be one of the following:
  • loadable’ – loadable kernel modules
  • linkable’ – linkable kernel objects
The default is to build loadable kernel modules.
--with-k-modules=K-MODULES-DIR
Specify the ‘K-MODULES-DIR’ directory to which kernel modules will be installed. The default is based on the option --with-k-release, --with-k-prefix and --with-k-rootdir. The default is DESTDIR/K-MODULES-DIR which is typically DESTDIR/lib/modules/PACKAGE_KRELEASE/. This directory is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message.
--with-k-build=K-BUILD-DIR
Specify the ‘K-BUILD-DIR’ base kernel build directory in which configured kernel source resides. The default is DESTDIR/K-MODULES-DIR/build. This directory is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message.
--with-k-source=K-SOURCE-DIR
Specify the ‘K-SOURCE-DIR’ base kernel build directory in which configured kernel source resides. The default is DESTDIR/K-MODULES-DIR/source. This directory is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message.
--with-k-modver=K-MODVER-FILE
Specify the ‘K-MODVER-FILE’ kernel module versions file. The default is K-BUILD-DIR/Module.symvers. This file is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message.
--with-k-sysmap=K-SYSMAP-FILE
Specify the ‘K-SYSMAP-FILE’ kernel system map file. The default is K-BUILD-DIR/System.map. This file is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message.
--with-k-archdir=K-ARCHDIR
Specify the ‘K-ARCHDIR’ kernel source architecture specific directory. The default is DESTDIR/K-SOURCE-DIR/arch. This directory is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message.
--with-k-machdir=K-MACHDIR
Specify the ‘K-MACHDIR’ kernel source machine specific directory. The default is DESTDIR/K-SOURCE-DIR/target_cpu. This directory is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message.
--with-k-config=K-CONFIG
Specify the ‘K-CONFIG’ kernel configuration file. The default is BOOT/config-K-RELEASE. This configuration file is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message.
--with-k-optimize=HOW
--without-k-optimize
Specify ‘HOW’ optimization, normal, size, speed or quick. size compiles kernel modules -Os, speed compiles kernel modules -O3, and quick compiles kernel modules -O0. The default is normal. Use with care. The most common use of this option is to specify --with-k-optimize=speed --disable-k-safe to compile for maximum performance. Nevertheless, even these setting are ricing and the resulting kernel modules will only be about 5% faster.
--with-lis[=LIS-DIR]
--without-lis
Specify the ‘LIS-DIR’ directory in which to find LiS headers. Also specifies that the build is to be made against Linux STREAMS. The default is /usr/include/LiS if it exists, ‘no’ otherwise. This directory is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message. This option has no effect on release packages that do not use the STREAMS subsystem.
--with-lfs[=LFS-DIR]
--without-lfs
Specify the ‘LFS-DIR’ directory in which to find LfS headers. Also specifies that the build is to be made against Linux Fast-STREAMS. The default is /usr/include/streams if it exists, ‘no’ otherwise. This directory is normally located by the configure script and need only be provided for special cross-build environments or when requested by a configure script error message. This option has no effect on release packages that do not use the STREAMS subsystem.
--with-strconf-master=STRCONF_CONFIG
Specify the ‘STRCONF_CONFIG’ file name to which the configuration master file is written. The default is Config.master. This option has no effect on release packages that do not use the STREAMS subsystem and the strconf scripts. This option should not be specified when configuring the master package as the setting for all add-on packages will conflict.
--with-base-major=STRCONF_MAJBASE
Start numbering for major devices at ‘STRCONF_MAJBASE’. The default is ‘230’. This option has no effect on release packages that do not use the STREAMS subsystem and the strconf scripts. This option should not be specified when configuring the master package as the setting for all add-on packages will conflict.

In addition, the following configure options, specific to the OpenSS7 STREAMS Compatibility package are available:

--disable-compat-os7
Disable OpenSS7 compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the OpenSS7 documentation so that STREAMS drivers and modules written to OpenSS7 specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for OpenSS7 will require porting in more respects. This option defaults to ‘enabled’.
--disable-compat-svr3
Disable UNIX SVR 3.2 compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the UNIX SVR 3.2 documentation so that STREAMS drivers and modules written to UNIX SVR 3.2 specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for UNIX SVR 3.2 will require porting in more respects. This option defaults to ‘enabled’.
--disable-compat-svr4
Disable UNIX SVR 4.2 MP compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the UNIX SVR 4.2 MP documentation so that STREAMS drivers and modules written to UNIX SVR 4.2 MP specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for UNIX SVR 4.2 MP will require porting in more respects. This option defaults to ‘enabled’.
--disable-compat-mps
Disable Mentat Portable STREAMS compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the Mentat Portable STREAMS documentation so that STREAMS drivers and modules written to Mentat Portable STREAMS specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for Mentat Portable STREAMS will require porting in more respects. This option defaults to ‘enabled’.
--disable-compat-sol8
Disable Solaris 8 compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the Solaris 8 documentation so that STREAMS drivers and modules written to Solaris 8 specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for Solaris 8 will require porting in more respects. This option defaults to ‘enabled’.
--disable-compat-uw7
Disable UnixWare 7 compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the UnixWare 7 documentation so that STREAMS drivers and modules written to UnixWare 7 specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for UnixWare 7 will require porting in more respects. This option defaults to ‘enabled’.
--disable-compat-osf
Disable OSF/1.2 compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the OSF/1.2 documentation so that STREAMS drivers and modules written to OSF/1.2 specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for OSF/1.2 will require porting in more respects. This option defaults to ‘enabled’.
--disable-compat-aix
Disable AIX 5L Version 5.1 compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the AIX 5L Version 5.1 documentation so that STREAMS drivers and modules written to AIX 5L Version 5.1 specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for AIX 5L Version 5.1 will require porting in more respects. This option defaults to ‘enabled’.
--disable-compat-hpux
Disable HPUX STREAMS/UX compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the HPUX STREAMS/UX documentation so that STREAMS drivers and modules written to HPUX STREAMS/UX specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for HPUX STREAMS/UX will require porting in more respects. This option defaults to ‘enabled’.
--disable-compat-irix
Disable IRIX compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the IRIX documentation so that STREAMS drivers and modules written to IRIX specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for IRIX will require porting in more respects. This option defaults to ‘enabled’.
--enable-compat-lis
--disable-compat-lis
Disable LiS compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the LiS documentation so that STREAMS drivers and modules written to LiS specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for LiS will require porting in more respects. This option defaults to ‘enabled’ when compiled with Linux Fast STREAMS, ‘disabled’ when compiled with Linux STREAMS.
--enable-compat-lfs
--disable-compat-lfs
Disable Linux Fast STREAMS compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the Linux Fast STREAMS documentation so that STREAMS drivers and modules written to Linux Fast STREAMS specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for Linux Fast STREAMS will require porting in more respects. This option defaults to ‘enabled’ when compiled with Linux STREAMS, ‘disabled’ when compiled with Linux Fast STREAMS.
--disable-compat-mac
Disable MacOT compatibility module. When enabled, OpenSS7 STREAMS Compatibility will attempt to be as compatible as possible (without replicating any bugs) with the MacOT documentation so that STREAMS drivers and modules written to MacOT specifications will compile with OpenSS7 STREAMS Compatibility. When disabled, STREAMS drivers and modules written for MacOT will require porting in more respects. This option defaults to ‘enabled’.

7.3.5.2 Environment Variables

Following are additional environment variables to configure, their meaning and use:

GPG
GPG signature command. This is used for signing distributions by the maintainer. By default, configure will search for this tool.
GNUPGUSER
GPG user name. This is used for signing distributions by the maintainer.
GNUPGHOME
GPG home directory. This is used for signing distributions by the maintainer.
GPGPASSWD
GPG password for signing. This is used for signing distributions by the maintainer. This environment variable is not maintained by the configure script and should only be used on an isolated system.
SOELIM
Roff source elimination command, soelim(1). This is only necessary when the option --with-cooked-manpages has been specified and configure cannot find the proper soelim(1) command. By default, configure will search for this tool.
REFER
Roff references command, refer(1). This is only necessary when the option --with-cooked-manpages has been specified and configure cannot find the proper refer(1) command. By default, configure will search for this tool.
TBL
Roff table command, tbl(1). This is only necessary when the option --with-cooked-manpages has been specified and configure cannot find the proper tbl(1) command. By default, configure will search for this tool.
PIC
Roff picture command, pic(1). This is only necessary when the option --with-cooked-manpages has been specified and configure cannot find the proper pic(1) command. By default, configure will search for this tool.
GZIP
Default compression options provided to GZIP_CMD.
GZIP_CMD
Manpages (and kernel modules) compression commands, gzip(1). This is only necessary when the option --without-compressed-manpages has not been specified and configure cannot find the proper gzip(1) command. By default, configure will search for this tool.
BZIP2
Default compression options provided to BZIP2_CMD
BZIP2_CMD
Manpages compression commands, bzip2(1). This is only necessary when the option --without-compressed-manpages has not been specified and configure cannot find the proper bzip2(1) command. By default, configure will search for this tool.
MAKEWHATIS
Manpages apropros database rebuild command, makewhatis(8). By default, configure will search for this tool. By default, configure will search for this tool.
CHKCONFIG
Chkconfig command, chkconfig(8). This was used for installation of init scripts. All packages now come with init_install(8) and init_remove(8) scripts used to install and remove init scripts on both RPM and Debian systems.
RPM
Rpm command, rpm(1). This is only necessary for RPM builds. By default, configure will search for this tool.
RPMBUILD
Build RPM command, rpmbuild(1). This is only necessary for RPM builds. By default, configure will search for this tool. rpm(1) will be used instead of rpmbuild(1) only if rpmbuild(1) cannot be found.
DPKG
Dpkg comand, dpkg(1). This command is used for building Debian packages. By default, configure will search for this tool.
DPKG_SOURCE
Dpkg-source command, dpkg-source(1). This command is used for building Debian dsc packages. By default, configure will search for this tool.
DPKG_BUILDPACKAGE
Dpkg-buildpackage command, dpkg-buildpackage(1). This command is used for building Debian deb packages. By default, configure will search for this tool.
DEB_BUILD_ARCH
Debian build architecture. This variable is used for building Debian packages. The default is the autoconf build architecture.
DEB_BUILD_GNU_CPU
Debian build cpu. This variable is used for building Debian packages. The default is the autoconf build cpu.
DEB_BUILD_GNU_SYSTEM
Debian build os. This variable is used for building Debian packages. The default is the autoconf build os.
DEB_BUILD_GNU_TYPE
Debian build alias. This variable is used for building Debian packages. The default is the autoconf build alias.
DEB_HOST_ARCH
Debian host architecture. This variable is used for building Debian packages. The default is the autoconf host architecture.
DEB_HOST_GNU_CPU
Debian host cpu. This variable is used for building Debian packages. The default is the autoconf host cpu.
DEB_HOST_GNU_SYSTEM
Debian host os. This variable is used for building Debian packages. The default is the autoconf host os.
DEB_HOST_GNU_TYPE
Debian host alias. This variable is used for building Debian packages. The default is the autoconf host alias.
LDCONFIG
Configure loader command, ldconfig(8). Command used to configure the loader when libraries are installed. By default, configure will search for this tool.
DESTDIR
Cross build root directory. Specifies the root directory for build and installation.
DEPMOD
Build kernel module dependencies command, depmod(8). This is used during installation of kernel modules to a running kernel to rebuild the modules dependency database. By default, configure will search for this tool.
MODPROBE
Probe kernel module dependencies command, modprobe(8). This is used during installation of kernel modules to a running kernel to remove old modules. By default, configure will search for this tool.
LSMOD
List kernel modules command, lsmod(8). This is used during installation of kernel modules to a running kernel to detect old modules for removal. By default, configure will search for this tool.
LSOF
List open files command, lsof(1). This is used during installation of kernel modules to a running kernel to detect old modules for removal. Processes owning the old kernel modules will be killed and the module removed. If the process restarts, the new module will be demand loaded. By default, configure will search for this tool.
GENKSYMS
Generate kernel symbols command, genksyms(8). This is used for generating module symbol versions during build. By default, configure will search for this tool.
KGENKSYMS
Linux 2.6 generate kernel symbols command, genksyms(8). This is used for generating module symbol version during build. By default, configure will search for this tool.
OBJDUMP
Object dumping command, objdump(1). This is used for listing information about object files. By default, configure will search for this tool.
NM
Object symbol listing command, nm(1). This is used for listing information about object files. By default, configure will search for this tool.
MODPOST_CACHE
Cache file for modpost(1). The version of the modpost.sh script that ships with each package can cache information to a cache file to speed multiple builds. This environment variable is used to specify a cache file.
AUTOM4TE
Autom4te command, autom4te(1). This is the executable used by autotest for pre- and post-installation checks. By default, configure will search for this tool.
AUTOTEST
Autotest macro build command, autom4te(1). This is the executable used by autotest for pre- and post-installation checks. By default, configure will search for this tool.
7.3.5.3 Build

To build from the tar ball, See Building from the Tar Ball.

7.4 Building

7.4.1 Building from the Source RPM

If you have downloaded the necessary source RPM (see Downloading the Source RPM), then the following instructions will rebuild the binary RPMs on your system. Once the binary RPMs are rebuilt, you may install them as described above (see Installing the Binary RPM).

The source RPM is rebuilt to binary RPMs as follows:

     % wget http://www.openss7.org/rpms/SRPMS/strcompat-0.9.2.7-1.src.rpm
     % rpmbuild --rebuild -vv strcompat-0.9.2.7-1.src.rpm

The rebuild process can also recognize a number of options that can be used to tweak the resulting binaries, See Configuring the Source RPM. These options are provided on the rpm(1) command line. For example:

     % rpmbuild --rebuild -vv --target athlon-redhat-linux \
       --define "_kversion 2.4.20-28.7" \
       --with lfs -- strcompat-0.9.2.7-1.src.rpm

will rebuild binary RPM for the ‘2.4.20-28.7’ kernel for the ‘athlon’ architecture against the Linux Fast-STREAMS STREAMS package. 61

Installation

To install the resulting binary RPM, See Installing the Binary RPM.

7.4.2 Building from the Debian DSC

If you have downloaded the necessary Debian DSC (see Downloading the Debian DSC), then the following instructions will rebuild the binary DEBs on your system. Once the binary DEBs are rebuilt, you may install them as described above (see Installing the Debian DEB).

The Debian DSC is rebuilt to binary DEBs as follows:

     % wget http://www.openss7.org/debian/strcompat_0.9.2.7-0.dsc
     % wget http://www.openss7.org/debian/strcompat_0.9.2.7-0.tar.gz
     % dpkg-buildpackage -v strcompat_0.9.2.7-0.dsc

The rebuild process can also recognize a number of options that can be used to tweak the resulting binaries, See Configuring the Debian DSC. These options are provided in the environment variable BUILD_DPKGOPTIONS and have the same form as the options to configure, See Configuring the Tar Ball. For example:

     % BUILD_DEBOPTIONS='
             --with-lfs
             --with-k-release=2.4.20-28.7
             --host=athlon-debian-linux-gnu'
       dpkg-buildpackage -v \
       strcompat_0.9.2.7-0.dsc

will rebuild binary DEB for the ‘2.4.20-28.7’ kernel for the ‘athlon’ architecture against the Linux Fast-STREAMS STREAMS package. 62

Installation

To install the resulting binary DEB, See Installing the Debian DEB.

7.4.3 Building from the Tar Ball

If you have downloaded the tar ball (see Downloading the Tar Ball), then the following instructions will rebuild the package on your system. (Note that the build process does not required root privilege.)

7.4.3.1 Native Build

Following is an example of a native build against the running kernel:

     % wget http://www.openss7.org/strcompat-0.9.2.7.tar.bz2
     % tar -xjvf strcompat-0.9.2.7.tar.bz2
     % pushd strcompat-0.9.2.7
     % ./configure
     % make
     % popd
7.4.3.2 Cross-Build

Following is an example for a cross-build. The kernel release version must always be specified for a cross-build.63 If you are cross-building, specify the root for the build with environment variable DESTDIR. The cross-compile host must also be specified if different from the build host. Either the compiler and other tools must be in the usual places where GNU autoconf(1) can find them, or they must be specified with declarations such as ‘CC=/usr/lib/ppc-linux/gcc’ on the configure command line.

     % wget http://www.openss7.org/strcompat-0.9.2.7.tar.bz2
     % tar -xjvf strcompat-0.9.2.7.tar.bz2
     % pushd strcompat-0.9.2.7
     % ./configure DESTDIR="/some/other/root" \
     	--with-k-release=2.4.18 --host sparc-linux
     % make
     % popd

7.5 Installing

7.5.1 Installing the Binary RPM

If you have downloaded the necessary binary RPMs (see Downloading the Binary RPM), or have rebuilt binary RPMs using the source RPM (see Building from the Source RPM), then the following instructions will install the RPMs on your system. For additional information on rpm(1), see rpm(8).

     % pushd RPMS/i686
     % rpm -ihv strcompat-*-0.9.2.7-1.7.2.i686.rpm

You must have the correct binary RPMs downloaded or built for this to be successful.

Some of the packages are relocatable and can have final installation directories altered with the --relocate option to rpm(1), see rpm(8). For example, the following will relocate the documentation and info directories:

     % pushd RPMS/i686
     % rpm -ihv \
             --relocate '/usr/share/doc=/usr/local/share/doc' \
             --relocate '/usr/share/info=/usr/local/share/info' \
             -- strcompat-doc-0.9.2.7-1.7.2.i686.rpm

The previous example will install the strcompat-doc package by will relocate the documentation an info directory contents to the /usr/local version.

7.5.2 Installing the Debian DEB

If you have downloaded the necessary Debian DEBs (see Downloading the Debian DEB), or have rebuild binary DEBs using the Debian DSC (see Building from the Debian DSC), then the following instructions will install the DEBs on your system. For additional information see dpkg(8).

     % pushd debian
     % dpkg -iv strcompat-*_0.9.2.7-0_*.deb

You must have the correct .deb files downloaded or build for this to be successful.

7.5.3 Installing the Tar Ball

After the build process (see Building from the Tar Ball), installation only requires execution of one of two automake(1) targets:

make install
The ‘installautomake(1) target will install all the components of the package. Root privilege is required to successfully invoke this target.
make install-strip
The ‘install-stripautomake(1) target will install all the components of the package, but will strip unnecessary information out of the objects and compress manual pages. Root privilege is required to successfully invoke this target.

7.6 Removing

7.6.1 Removing the Binary RPM

To remove an installed version of the binary RPMs (whether obtained from the OpenSS7 binary RPM releases, or whether created by the source RPM), execute the following command:

     % rpm -evv `rpm -qa | grep '^strcompat-'`

For more information see rpm(1).

7.6.2 Removing the Debian DEB

To remove and installed version of the Debian DEB (whether obtained from the OpenSS7 binary DEB releases, or whether created by the Debian DSC), execute the following command:

     % dpkg -ev `dpkg -l | grep '^strcompat-'`

For more information see dpkg(8).

7.6.3 Removing the Source RPM

To remove all the installed binary RPM build from the source RPM, see Removing the Binary RPM. Then simply remove the binary RPM package files and source RPM file. A command such as:

     % find / -name 'strcompat-*.rpm' -type f -print0 | xargs --null rm -f

should remove all strcompat RPMs from your system.

7.6.4 Removing the Debian DSC

To remove all the installed binary DEB build from the Debian DSC, see Removing the Debian DEB. Then simply remove the binary DEB package files and Debian DSC file. A command such as:

     % find / \( -name 'strcompat-*.deb' \
              -o -name 'strcompat-*.dsc' \
              -o -name 'strcompat-*.tar.* \
              \) -type f -print0 | xargs --null rm -f

should remove all strcompat DEBs, DSCs and TARs from your system.

7.6.5 Removing the Tar Ball

To remove a version installed from tar ball, change to the build directory where the package was built and use the ‘uninstallautomake(1) target as follows:

     % cd /usr/src/strcompat
     % make uninstall
     % cd ..
     % rm -fr strcompat-0.9.2.7
     % rm -f strcompat-0.9.2.7.tar.gz
     % rm -f strcompat-0.9.2.7.tar.bz2

If you have inadvertently removed the build directory and, therefore, no longer have a configured directory from which to execute ‘make uninstall’, then perform all of the steps for configuration and installation (see Installing the Tar Ball) except the final installation and then perform the steps above.

7.7 Loading

7.7.1 Normal Module Loading

When OpenSS7 STREAMS Compatibility installs, modules and drivers belonging to release packages are normally configured for demand loading. The ‘install’ and ‘install-stripautomake(1) targets will make the necessary changes to the /etc/modules.conf file and place the modules in an appropriate place in /lib/modules/2.4.20-28.7/strcompat. The ‘make install’ process should have copied the kernel module files streams-*.o to the directory /lib/modules/2.4.20-28.7/strcompat. This means that to load any of these modules, you can simply execute, for example, ‘modprobe stream-somedriver’.64

7.7.1.1 Linux Fast-STREAMS Module Loading

The strcompat demand load system supports both the old kerneld and the new kmod mechanisms for demand loading kernel modules.

The convention for strcompat kernel loadable object files is:

  • Their name start with "streams-".
  • They are placed in /lib/modules/2.4.20-28.7/streams/, where ‘2.4.20-28.7’ is an example kernel version.

If your kernel has been built using the kerneld daemon, then strcompat kernel modules will automatically load as soon as the STREAMS module is pushed or the driver is opened. The ‘make install’ process makes the necessary changes to the /etc/modules.conf file. After the install, you will see lines like the following added to your /etc/modules.conf file:

     prune modules.strcompat
     if -f /lib/modules/`uname -r`/modules.strcompat
     include /lib/modules/`uname -r`/modules.strcompat
     endif

which will provide for demand loading of the modules if they have been built and installed for the running kernel. The /lib/modules/`uname -r`/modules.strcompat file looks like this:

     alias char-major-245  streams-some_driver
     alias char-major-246  streams-other_driver

Note that STREAMS modules are not listed in this file, but will be loaded by name using kerneld if available.

Linux Fast-STREAMS has a wider range of kernel module loading mechanisms than is provided by the deprecated LiS. For mechanisms used for kernel module loading under Linux Fast-STREAMS, See About This Manual.

7.7.1.2 Linux STREAMS Module Loading

LiS is deprecated and this section has been deleted.

7.8 Maintenance

7.8.1 Makefile Targets

automake(1) has many targets, not all of which are obvious to the casual user. In addition, OpenSS7 automake(1) files have additional rules added to make maintaining and releasing a package somewhat easier. This list of targets provides some help with what targets can be invoked, what they do, and what they hope to achieve. The available targets are as follows:

7.8.1.1 User Targets

The following are normal targets intended to be invoked by installers of the package. They are concerned with compiling, checking the compile, installing, checking the installation, and removing the package.

[all]
This is also the default target. It compiles the package and all release packages selected by configure. This is performed after configuring the source with ‘configure’. A Makefile stub is provided so that if the package has not had autoreconf(1) run (such as when checked out from CVS, the package will attempt to run ‘autoreconf -fiv’.

All OpenSS7 Project packages are configured without maintainer mode and without dependency tracking by default. This speeds compilation of the package for one-time builds. This also means that if you are developing using the source package (edit-compile-test cycle), changes made to source files will not cause the automatic rebuilding due to dependencies. There are two ways to enable dependency tracking: specify --enable-maintainer-mode to configure; or, specify --enable-dependency-tracking to configure. I use the former during my edit-compile-test cycle.

This is a standard GNU automake(1) makefile target. This target does not require root privilege.

check
All OpenSS7 Project release packages provide check scripts for the check target. This step is performed after compiling the package and will run all of the ‘check’ programs against the compiled binaries. Which checks are performed depends on whether --enable-maintainer-mode was specified to configure. If in maintainer mode, checks that assist with the release of the package will be run (such as checking that all manual pages load properly and that they have required sections.) We recommend running the check stage before installing, because it catches problems that might keep the installed package from functioning properly.

Another way to enable the greater set of checks, without invoking maintainer mode, is to specify --enable-checks to configure. For more information, see Pre-installation Checks.

This is a standard GNU automake(1) makefile target, although the functions performed are customized for the OpenSS7 Project. This target does not require root privilege.

install
install-strip
The ‘install’ target installs the package by installing each release package. This target also performs some actions similar to the pre- and post-install scripts used by packaging tools such as rpm(1) or dpkg(1). The ‘install-strip’ target strips unnecessary symbols from executables and kernel modules before installing.

This is a standard GNU automake(1) makefile target. This target requires root privilege.

installcheck
All OpenSS7 Project packages provide test scripts for the ‘installcheck’ target. Test scripts are created and run using autotest (part of the autoconf(1) package). Which test suites are run and how extensive they are depends on whether --enable-maintainer-mode was specified to configure. When in maintainer mode, all test suites will be run. When not in maintainer mode, only a few post-install checks will be performed, but the test suites themselves will be installed in /usr/libexec/strcompat65 for later use.

This is a standard GNU automake(1) makefile target. This target might require root privilege. Tests requiring root privilege will be skipped when run as a regular user. Tests requiring regular account privileges will be skipped when run as root.

retest
To complement the ‘installcheck’ target above, all OpenSS7 Project packages provide the ‘retest’ target as a means to rerun failed conformance test suite test cases. The ‘retest’ target is provided because some test cases in the test suites have delicate timing considerations that allow them to fail sporadically. Invoking this target will retest the failed cases until no cases that are not expected failures remain.

This is an OpenSS7 Project specific makefile target. As with ‘installcheck’, this target might require root privilege. Tests requiring root privilege will be skipped when run as a regular user. Tests requiring regular account privileges will be skipped when run as root.

uninstall
This target will reverse the steps taken to install the package. This target also performs pre- and post- erase scripts used by packaging tools such as rpm or dpkg. You need to have a configured build directory from which to execute this target, however, you do not need to have compiled any of the files in that build directory.66

The ‘uninstall’ target unfortunately removes add-on packages in the same order in which they were installed. This is not good for the OpenSS7 Master Package, where the ‘remove’ target should be used instead.

This is a standard GNU automake(1) makefile target. This target requires root privilege.

remove
This target is like ‘uninstall’ with the exception that it removes add-on packages in the reverse order that installation was performed.67

This is an OpenSS7 Project specific makefile target. This target requires root privilege.

7.8.1.2 Maintainer Targets

The following targets are targets intended for use by maintainers of the package, or those responsible for release and packaging of a derivative work of the package. Some of these targets are only effective when maintainer mode has been invoked (--enable-maintainer-mode specified to configure.)

dist
Creates a distribution package (tarball) in the top level build directory. OpenSS7 Project packages distribute two archives: a ‘gzip tar’ archive and a ‘bzip tar’ archive. These archives will have the name strcompat-0.9.2.7.tar.gz and strcompat-0.9.2.7.tar.bz2.

This is a standard GNU automake(1) makefile target. This target does not require root privilege.

distcheck
This target is intended for use when releasing the package. It creates the tar(1) archives above and then unpacks the tarball in a source directory, configures in a separate build directory, compiles the package, installs the package in a separate install directory, tests the install package to ensure that some components work, and, finally, uses the unpacked source tree to build another tarball. If you have added or removed files from the package, this is a good way to ensure that everything is still stable for release.

This is a standard GNU automake(1) makefile target. This target does not require root privilege.

7.8.1.3 Clean Targets
mostlyclean
Cleans out most of the files from the compile stage. This target is helpful if you have not enabled dependency tracking and need to recompile with changes.

This is a standard GNU automake(1) makefile target. This target does not require root privilege.

clean
Cleans all the files from the build directory generated during the ‘make [all]’ phase. It does not, however, remove files from the directory left there from the configure run. Use the ‘distclean’ target to remove those too.

This is a standard GNU automake(1) makefile target. This target might require root privilege if the ‘installcheck’ target or the testsuite was invoked with root privilege (leaving files belonging to root).

distclean
This target cleans out the directories left behind by ‘distcheck’ and removes all the configure and generated files from the build directory. This will effectively remove all the files in the build directory, with the except of files that belong to you or some other process.

This is a standard GNU automake(1) makefile target. This target might require root privilege if the ‘installcheck’ target or the testsuite was invoked with root privilege (leaving files belonging to root).

maintainer-clean
This target not only removes files from the build directory, it removes generated files from the source directory as well. Care should be taken when invoking this target, because it removes files generated by the maintainer and distributed with the archive that might require special tools to regenerate. These special tools might only be available to the maintainer.68 It also means that you probably need a full blown Linux system to rebuild the package. For more information, see Downloading from CVS.

This is a standard GNU automake(1) makefile target. This target might require root privilege if the ‘installcheck’ target or the testsuite was invoked with root privilege (leaving files belonging to root).

check-clean
This target removes log files left behind by the ‘check’ target. By default, the check scripts append to log files in the top level build directory. This target can be used to clean out those log files before the next run.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

7.8.1.4 Manual Page Targets

The following targets are used to build, install and uninstall just the manual pages from the distribution. These targets are good for creating a distribution of just the manual pages. When building atop multiple packages, these targets recurse down through each package.

mans
Build all of the manual pages. This involves performing parameter substitution on manual pages and optionally cooking the manual pages if --with-cooked-manpages was requested during configuration.
install-mans
Installs the manual pages under DESTDIR. Specify DESTDIR to place the manual pages wherever you see fit. If DESTDIR is not specified on the command line, the manual pages will be installed in the normal installation directory.
uninstall-mans
Uninstalls the manual pages from DESTDIR. Specify DESTDIR to indicate where to remove the manual pages from. If DESTDIR is not specified on the command line, the manual pages will be removed from the normal installation directory.

7.8.1.5 Release Targets

The following are targets used to generate complete releases into the package distribution directory. These are good for unattended and NFS builds, which is what I use them for. Also, when building from atop multiple packages, these targets also recurse down through each package.

release
Build all of the things necessary to generate a release. On an rpm(1) system this is the distribution archives, the source rpm, and the architecture dependent and architecture independent binary rpms. All items are placed in the package distribution directory that can be specified with the --with-pkg-distdir=DIR option to configure.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

forced-release
The ‘release’ target will not regenerate any files that already exist in the package distribution directory. This forced target will.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

release-sign
You will be prompted for a password, unless to specify it to make with the GNUPGPASS variable. For unattended or non-interactive builds with signing, you can do that as: ‘make GNUPGPASS=mypasswd release-sign

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

forced-release-sign
The ‘release-sign’ target will not regenerate any files that already exist in the package distribution directory. This forced target will.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

release-clean
This target will remove all distribution files for the current package from the package distribution directory.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

7.8.1.6 Logging Targets

For convenience, to log the output of a number of targets to a file, log targets are defined. The log file itself is used as the target to make, but make invokes the target minus a .log suffix. So, for example, to log the results of target ‘foo’, invoke the target ‘foo.log’. The only target that this does not apply to is ‘compile.log’. When you invoke the target ‘compile.log’ a simple automake(1) is invoked and logged to the file compile.log. The ‘foo.log’ rule applies to all other targets. This does not work for all targets, just a selected few.69 Following are the logging targets:

Common Logging Targets

Common logging targets correspond to normal user automake(1) makefile targets as follows:

compile.log
This is an OpenSS7 Project specific makefile target, but it invokes the standard GNU automake(1) makefile target ‘[all]’.
check.log
This is an OpenSS7 Project specific makefile target, but it invokes the standard GNU automake(1) makefile target ‘check’.
install.log
This is an OpenSS7 Project specific makefile target, but it invokes the standard GNU automake(1) makefile target ‘install’.
installcheck.log
This is an OpenSS7 Project specific makefile target, but it invokes the standard GNU automake(1) makefile target ‘installcheck’.
uninstall.log
This is an OpenSS7 Project specific makefile target, but it invokes the standard GNU automake(1) makefile target ‘uninstall’.
remove.log
This is an OpenSS7 Project specific makefile target, that invokes the OpenSS7 Projectremove’ target.
Maintainer Logging Targets

Maintainer logging targets correspond to maintainer mode automake(1) makefile targets as follows:

dist.log
This is an OpenSS7 Project specific makefile target, but it invokes the standard GNU automake(1) makefile target ‘dist’.
distcheck.log
This is an OpenSS7 Project specific makefile target, but it invokes the standard GNU automake(1) makefile target ‘distcheck’.
srpm.log
This is an OpenSS7 Project specific makefile target, that invokes the OpenSS7 Projectsrpm’ target.
rebuild.log
This is an OpenSS7 Project specific makefile target, that invokes the OpenSS7 Projectrebuild’ target.
resign.log
This is an OpenSS7 Project specific makefile target, that invokes the OpenSS7 Projectresign’ target.
release.log
This is an OpenSS7 Project specific makefile target, that invokes the OpenSS7 Projectrelease’ target.
release-sign.log
This is an OpenSS7 Project specific makefile target, that invokes the OpenSS7 Projectrelease-sign’ target.

If you want to add one, simply add it to LOGGING_TARGETS in Makefile.am.

7.8.1.7 Problem Report Targets

To ease problem report generation, all logging targets will automatically generate a problem report suitable for mailing in the file target.pr for target ‘target.log’. This problem report file is in the form of an email and can be sent using the included send-pr script or by invoking the ‘send-pr’ makefile target.

There are two additional problem report targets:

pr
The ‘pr’ target is for independently generating a problem report outside of the build or installation process. The target will automatically generate a problem report skeleton suitable for editing and mailing in the file problem.pr. This problem report file is in the form of an email and can be edited and sent directly, or sent using the included send-pr script or by invoking the ‘send-pr’ target.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

send-pr
The ‘send-pr’ target is for finalizing and mailing a problem report generated either inside or outside the build and installation process. The target will automatically finalize and mail the problem.pr problem report if it has changed since the last time that ‘send-pr’ was invoked.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege (unless the problem report file was generated as root).

7.8.1.8 Release Archive Targets

The following targets are used to generate and clean distribution archive and signature files. Whereas the ‘dist’ target affects archives in the top build directory, the ‘release-archive’ targets affects archives in the package distribution directory (either the top build directory or that specified with --with-pkg-distdir=DIR to configure).

You can change the directory to which packages are distributed by using the --with-pkg-distdir=DIR option to configure. The default directory is the top build directory.

release-archives
This target creates the distribution archive files if they have not already been created. This not only runs the ‘dist’ target, but also copies the files to the distribution directory, which, by default is the top build directory.

The files generated are named:

strcompat-0.9.2.7.tar.gz and strcompat-0.9.2.7.tar.bz2

You can change this distribution directory with the --with-pkg-distdir option to configure. See ‘./configure --help’ for more details on options.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

release-sign-archives
This target is like ‘release-archives’, except that it also signs the archives using a GPG detached signature. You will be prompted for a password unless you pass the GNUPGPASS variable to make. For automated or unattended builds, pass the GNUPGPASS variable like so:

make GNUPGPASS=mypasswd release-sign-archives

Signature files will be named:

strcompat-0.9.2.7.tar.gz.asc and strcompat-0.9.2.7.tar.bz2.asc

These files will be moved to the package distribution directory with the plain text archives.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

release-clean-archives
This target will clean the release archives and signature files from the package distribution directory.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

7.8.1.9 RPM Build Targets

On rpm(1) systems, or systems sporting rpm packaging tools, the following targets are used to generate rpm(1) release packages. The epoch and release number can be controlled by the contents of the .rpmepoch and .rpmrelease files, or with the --with-rpm-epoch=EPOCH and --with-rpm-release=RELEASE options to configure. See ‘configure --help’ for more information on options. We always use release number ‘1’. You can use release numbers above ‘1’.

srpm
This target generates the source rpm for the package (without signing the source rpm). The source rpm will be named: strcompat-0.9.2.7-1.srpm.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

rpms
This target is responsible for generating all of the package binary rpms for the architecture. The binary rpms will be named:

strcompat-*-0.9.2.7-1.*.rpm

where the stars indicate the subpackage and the architecture. Both the architecture specific subpackages (binary objects) and the architecture independent (.noarch) subpackages will be built unless the the former was disabled with the option --disable-arch, or the later with the option --disable-indep, passed to configure.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

sign
srpm-sign
These two targets are the same. When invoked, they will add a signature to the source rpm file, provided that the file does not already have a signature. You will be prompted for a password if a signature is required. Automated or unattended builds can be achieved by using the emake expect script, included in ${srcdir}/scripts/emake.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

rebuild
This target accepts searches out a list of kernel names from the ${DESTDIR}/lib/modules directory and builds rpms for those kernels and for each of a set of architectures given in the AM_RPMTARGETS variable to make. This is convenience target for building a group of rpms on a given build machine.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

resign
This target will search out and sign, with a GPG signature, the source rpm, and all of the binary rpms for this package that can be found in the package distribution directory. This target will prompt for a GPG password. Automated or unattended builds can be achieved with the emake expect script located here: ${srcdir}/scripts/emake.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

7.8.1.10 Debian Build Targets

On Debian systems, or systems sporting Debian packaging tools, the following targets are used to generate Debian release packages. The release number can be controlled by the contents of the .debrelease file, or with the --with-debrelease=RELEASENUMBER option to configure. See ‘configure --help’ for more information on options.

dsc
This target will build the Debian source change package (.dsc file). We use release number ‘0’ so that the entire tarball is included in the dsc file. You can use release number ‘1’ for the same purposes. Release numbers above ‘1’ will not include the entire tarball. The .dsc file will be named: strcompat_0.9.2.7-0.dsc.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

sigs
This target signs the .deb files. You will be prompted for a password, unless to specify it to make with the GNUPGPASS variable.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

debs
This target will build the Debian binary package (.deb file) from the .dsc created above. (This target will also create the .dsc if it has not been created already.) The subpackage .deb files will be named: strcompat-*_0.9.2.7-0_*.deb, where the stars indicate the subpackage and the architecture.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

csig
This target signs the .dsc file. You will be prompted for a password, unless to specify it to make with the GNUPGPASS variable.

This is an OpenSS7 Project specific makefile target. This target does not require root privilege.

7.8.1.11 Documentation Targets

On systems that have doxygen(1) documentation tool, the following targets are used to generate doxygen html documentation:

doxy
This target generates doxygen(1) documetnation from suitably marked sources. File containing the necessary documentation marks are discovered automatically by configure. Doxygen documentation can be generated bus is not distributed. Documentation is cerated in the subdirectory doc/html.

8 Troubleshooting

8.1 Test Suites

8.1.1 Pre-installation Checks

Most OpenSS7 packages, including the OpenSS7 STREAMS Compatibility package, ship with pre-installation checks integral to the build system. Pre-installation checks include check scripts that are shipped in the scripts subdirectory as well as specialized make targets that perform the checks.

When building and installing the package from RPM or DEB source packages (see Building from the Source RPM; and Building from the Debian DSC), a fundamental set of post-compile, pre-installation checks are performed prior to building binary packages. This is performed automatically and does not require any special actions on the part of the user creating binary packages from source packages.

When building and installing the package from tarball (see Building from the Tar Ball; and Installing the Tar Ball), however, pre-installation checks are only performed if specifically invoked by the builder of the package. Pre-installation checks are invoked after building the package and before installing the package. Pre-installation checks are performed by invoking the ‘check’ or ‘check.log’ target to make when building the package, as shown in testsuite:ex0.

     % wget http://www.openss7.org/strcompat-0.9.2.7.tar.bz2
     % tar -xjvf strcompat-0.9.2.7.tar.bz2
     % pushd strcompat-0.9.2.7
     % ./configure
     % make
     % make check  # <------- invoke pre-installation checks
     % popd

Example 8.1: Invoking Pre-Installation Checks

Pre-installation checks fall into two categories: System Checks and Maintenance Checks.

8.1.1.1 Pre-Installation System Checks

System Checks are post-compilation checks that can be performed before installing the package that check to ensure that the compiled objects function and will be successfully installed. When the --enable-maintainer-mode option has not been passed to configure, only System Checks will be performed.

For example, the steps shown in testsuite:ex1 will perform System checks.

     % wget http://www.openss7.org/strcompat-0.9.2.7.tar.bz2
     % tar -xjvf strcompat-0.9.2.7.tar.bz2
     % pushd strcompat-0.9.2.7
     % ./configure
     % make
     % make check  # <------ invokes System pre-installation checks
     % popd

Example 8.2: Invoking System Checks

8.1.1.2 Pre-Installation Maintenance Checks

Maintenance Checks include all System Checks, but also checks to ensure that the kernel modules, applications programs, header files, development tools, test programs, documentation, and manual pages conform to OpenSS7 standards. When the --enable-maintainer-mode option has been passed to configure, Maintenance Checks will be performed.

For example, the steps shown in testsuite:ex2 will perform Maintenance checks.

     % wget http://www.openss7.org/strcompat-0.9.2.7.tar.bz2
     % tar -xjvf strcompat-0.9.2.7.tar.bz2
     % pushd strcompat-0.9.2.7
     % ./configure --enable-maintainer-mode
     % make
     % make check  # <------ invokes Maintenance pre-installation checks
     % popd

Example 8.3: Invoking Maintenance Checks

8.1.1.3 Specific Pre-Installation Checks

A number of check scripts are provided in the scripts subdirectory of the distribution that perform both System and Maintenance checks. These are as follows:

check_commands
This check performs both System and Maintenance checks.

When performing System tests, the following tests are performed:

Unless cross-compiling, or unless a program is included in AM_INSTALLCHECK_STD_OPTIONS_EXEMPT every program in bin_PROGRAMS, sbin_PROGRAMS, and libexec_PROGRAMS is tested to ensure that the --help, --version, and --copying options are accepted. When cross-compiling is is not possible to execute cross-compiled binaries, and these checks are skipped in that case.

Script executables, on the other hand, can be executed on the build host, so, unless listed in AM_INSTALLCHECK_STD_OPTIONS_EXEMPT, every program in dist_bit_SCRIPTS, dist_sbin_SCRIPTS, and pkglibexec_SCRIPTS are tested to ensure that the --help, --version, and --copying options are accepted.

When performing Maintenance tests, check_commands also checks to ensure that a manual page exists in section 1 for every executable binary or script that will be installed from bin_PROGRAMS and dist_bin_SCRIPTS. It also checks to ensure that a manual page exists in section 8 for every executable binary or script that will be installed from sbin_PROGRAMS, dist_sbin_SCRIPTS, libexec_PROGRAMS, and pkglibexec_SCRIPTS.

check_decls
This check only performs Maintenance checks.

It collects the results from the check_libs, check_modules and check_headers check scripts and tests to ensure every declaration of a function prototype or external variable contained in installed header files has a corresponding exported symbol from either a to be installed shared object library or a to be installed kernel module. Declarations are exempted from this requirement if their identifiers have been explicitly added to the EXPOSED_SYMBOL variable. If WARN_EXCESS is set to ‘yes’, then the check script will only warn when excess declarations exist (without a corresponding exported symbol); otherwise, the check script will generate an error and the check will fail.

check_headers
This check only performs Maintenance checks.

When performing Maintenance tests, it identifies all of the declarations included in to be installed header files. It then checks to ensure that a manual page exists in sections 2, 3, 7 or 9, as appropriate, for the type of declaration. It also checks to see if a manual page source file exists in the source directory for a declaration that has not been included in the distribution. Function or prototype declarations that do not have a manual page in sections 2, 3, or 9 will cause the check to fail. Other declarations (‘variable’, ‘externvar’, ‘macro’, ‘enumerate’, ‘enum’, ‘struct’, ‘union’, ‘typedef’, ‘member’, etc.) will only warn if a manual page does not exist, but will not fail the check.

check_libs
This check only performs Maintenance checks.

When performing Maintenance tests, it checks that each exported symbol in each to be installed shared object library has a manual page in section 3. It also checks that each exported symbol has a ‘function’, ‘prototype’ or ‘externvar’ declaration in the to be installed header files. A missing declaration or manual page will cause this check to fail.

check_mans
This check only performs Maintenance checks.

When performing Maintenance tests, it checks that to be install manual pages can be formatted for display without any errors or warnings from the build host man program. It also checks that required headings exist for manual pages according to the section in which the manual page will be installed. It warns if recommended headings are not included in the manual pages. Because some RPM distributions have manual pages that might conflict with the package manual pages, this check script also checks for conflicts with installed manual pages on the build host. This check script also checks to ensure that all to be installed manual pages are used in some fashion, that is, they have a declaration, or exported symbol, or are the name of a kernel module or STREAMS module or driver, possibly capitalized.

Note that checking for conflicts with the build host should probably be included in the System checks (because System checks are performed before the source RPM %install scriptlet).

check_modules
This check performs both System and Maintenance checks.

When performing System tests, it checks each to be installed kernel module to ensure that all undefined symbols can be resolved to either the kernel or another module. It also checks whether an exported or externally declared symbol conflicts with an exported or externally declared symbol present in the kernel or another module.70

When performing Maintenance tests, this check script tests that each to be installed kernel module has a manual page in section 9 and that each exported symbol that does not begin with an underscore, and that belongs to an exported function or exported variable, has a manual page in section 9. It also checks to ensure that each exported symbol that does not begin with an underscore, and that belongs to an exported function or exported variable, has a ‘function’, ‘prototype’ or ‘externvar’ declaration in the to be installed header files.

check_streams
This check performs only Maintenance checks.

When performing Maintenance tests, it checks that for each configured STREAMS module or driver, or device node, that a manual page exists in section 4 or section 7 as appropriate.

The output of the pre-installation tests are fairly self explanatory. Each check script saves some output to name.log, where name is the name of the check script as listed above. A summary of the results of the test are display to standard output and can also be captured to the check.log file if the ‘check.log’ target is used instead of the ‘check’ target to make.

Because the check scripts proliferate name.log files throughout the build directory, a ‘make check-cleanmake target has be provided to clean them out. ‘make check-clean’ should be run before each successive run of ‘make check’.

8.1.2 Post-installation Checks

Most OpenSS7 packages ship with a compatibility and conformance test suite built using the ‘autotest’ capabilities of ‘autoconf’. These test suites act as a wrapper for the compatibility and conformance test programs that are shipped with the package.

Unlike the pre-installation checks, the post-installation checks are always run complete. The only check that post-installation test scripts perform is to test whether they have been invoked with root privileges or not. When invoked as root, or as a plain user, some tests might be skipped that require root privileges, or that require plain user privileges, to complete successfully.

8.1.2.1 Running Test Suites

There are several ways of invoking the conformance test suites:

  1. The test suites can be run after installation of the package by invoking the ‘make installcheck’ or ‘make installcheck.log’ target. Some packages require that root privileges be acquired before invoking the package.
  2. The test suites can be run from the distribution subdirectory after installation of the package by invoking the testsuite shell script directly.
  3. The test suites can be run standalone from the libexec (/usr/libexec) installation directory by invoking the testsuite shell script directly.

Typical steps for invoking the test suites directly from make are shown in testsuite:ex3.

     % wget http://www.openss7.org/strcompat-0.9.2.7.tar.bz2
     % tar -xjvf strcompat-0.9.2.7.tar.bz2
     % pushd strcompat-0.9.2.7
     % ./configure
     % make
     % make check  # <------ invokes System pre-installation checks
     % make install
     % sudo make installcheck # <------- invokes post-installation tests
     % popd

Example 8.4: Invoking System Checks

When performing post-installation checks for the purposes of generating a problem report, the checks should always be performed from the build directory, either with ‘make installcheck’ or by invoking testsuite directly from the tests subdirectory of the build directory. This ensures that all of the information known to configure and pertinent to the configuration of the system for which a test case failed, will be collected in the resulting testsuite.log file deposited upon test suite failure in the tests directory. This testsuite.log file can then be attached as part of the problem report and provides rich details to maintainers of the package. See also See Problem Reports, below.

Typical steps for invoking and installed testsuite standalone are shown in testsuite:ex4.

     % [sudo] /usr/libexec/strcompat/testsuite

Example 8.5: Invoking testsuite Directly

When invoked directly, testsuite will generate a testsuite.log file in the current directory, and a testsuite.dir directory of failed tests cases and debugging scripts. For generating a problem report for failed test cases, see Stand Alone Problem Reports.

8.2 Problem Reports

8.2.1 Problem Report Guidelines

Problem reports in the following categories should include a log file as indicated in the table below:

./configure
A problem with the configuration process occurs that causes the ‘./configure’ command to fail. The problem report must include the config.log file that was generated by configure.
make compile.log
A problem with the build process occurs that causes the ‘make’ command to fail. Perform ‘make clean’ and then ‘make compile.log’ and attach the config.log and compile.log files to the problem report.
make check.log
A problem occurs with the ‘make check’ target that causes it to fail. Perform ‘make check-clean check.log’ and attach the config.log, compile.log and check.log files to the problem report.
sudo make install.log
A problem occurs with ‘sudo make install’ that causes it to fail. Perform ‘sudo make uninstall’ and ‘sudo make install.log’ and attach the config.log, compile.log, check.log, and install.log files to the problem report.
[sudo] make installcheck.log
A problem occurs with the ‘make installcheck’ target that causes the test suite to fail. Attach the resulting tests/testsuite.log and installcheck.log file to the problem report. There is no need to attach the other files as they are included in tests/testsuite.log.
[sudo] make uninstall.log
A problem occurs with the ‘make uninstall’ target that causes the test suite to fail. Perform ‘sudo make uninstall.log’ and attach the config.log, compile.log, check.log, install.log, installcheck.log, tests/testsuite.log and uninstall.log file to the problem report.
[sudo] make remove.log
A problem occurs with the ‘make remove’ target that causes the test suite to fail. Perform ‘sudo make remove.log’ and attach the config.log, compile.log, check.log, install.log, installcheck.log, tests/testsuite.log and remove.log file to the problem report.

For other problems that occur during the use of the OpenSS7 STREAMS Compatibility package, please write a test case for the test suite that recreates the problem if one does not yet exist and provide a test program patch with the problem report. Also include whatever log files are generated by the kernel (cmn_err(9)) or by the strerr(8) or strace(1) facilities (strlog(9)).

8.2.2 Generating Problem Reports

The OpenSS7 Project uses the GNU GNATS system for problem reporting. Although the ‘send-pr’ tool from the GNU GNATS package can be used for bug reporting to the project's GNATS database using electronic mail, it is not always convenient to download and install the GNATS system to gain access to the ‘send-pr’ tool.

Therefore, the OpenSS7 STREAMS Compatibility package provides the ‘send-pr’ shell script that can be used for problem reporting. The ‘send-pr’ shell script can invoked directly and is a work-alike for the GNUsend-pr’ tool.

The ‘send-pr’ tool takes the same flags and can be used in the same fashion, however, whereas ‘send-pr’ is an interactive tool71, ‘send-pr’ is also able to perform batch processing. Whereas ‘send-pr’ takes its field information from local databases or from using the ‘query-pr’ C-language program to query a remote database, the ‘send-pr’ tool has the field database internal to the tool.

Problem reports can be generate using make, See Problem Report Targets. An example of how simple it is to generate a problem report is illustrated in autopr:ex0.

     % make pr
     SEND-PR:
     SEND-PR: send-pr:  send-pr was invoked to generate an external report.  An
     SEND-PR: automated problem report has been created in the file named
     SEND-PR: 'problem.pr' in the current directory.  This problem report can
     SEND-PR: be sent to bugs@openss7.org by calling this script as
     SEND-PR: '/home/brian/os7/scripts/send-pr --file="problem.pr"'.
     SEND-PR:
     SEND-PR: It is possible to edit some of the fields before sending on the
     SEND-PR: problem report.  Please remember that there is NO WARRANTY.  See
     SEND-PR: the file 'COPYING' in the top level directory.
     SEND-PR:
     SEND-PR: Please do not send confidential information to the bug report
     SEND-PR: address.  Inspect the file 'problem.pr' for confidential
     SEND-PR: information before mailing.
     SEND-PR:
     % vim problem.pr  # <--- follow instructions at head of file
     % make send-pr

Example 8.6: Invoking Problem Report Generation

Using the ‘make pr’ target to generate a problem report has the advantages that it will assemble any available *.log files in the build directory and attach them to the problem report.

8.2.3 Automatic Problem Reports

The OpenSS7 STREAMS Compatibility package also provides a feature for automatic problem report generation that meets the problem report submission guidelines detailed in the preceding sections.

Whenever a logging makefile target (see Logging Targets) is invoked, if the primary target fails, the send-pr shell script is invoked to automatically generate a problem report file suitable for the corresponding target (as described above under see Problem Report Guidelines). An example is shown in autopr:ex1.

     % make compile.log
     ...
     ...
     make[5]: *** [libXNSdrvs_a-ip.o] Error 1
     make[5]: Leaving directory `/u6/buildel4/strxns'
     make[4]: *** [all-recursive] Error 1
     make[4]: Leaving directory `/u6/buildel4/strxns'
     make[3]: *** [all] Error 2
     make[3]: Leaving directory `/u6/buildel4/strxns'
     make[2]: *** [all-recursive] Error 1
     make[2]: Leaving directory `/u6/buildel4'
     make[1]: *** [all] Error 2
     make[1]: Leaving directory `/u6/buildel4'
     SEND-PR:
     SEND-PR: send-pr:  Make target compile.log failed in the compile stage.  An
     SEND-PR: automated problem report has been created in the file named
     SEND-PR: 'problem.pr' in the current directory.  This problem report can
     SEND-PR: be sent to bugs@openss7.org by calling 'make send-pr'.
     SEND-PR:
     SEND-PR: It is possible to edit some of the fields before sending on the
     SEND-PR: problem report.  Please remember that there is NO WARRANTY.  See
     SEND-PR: the file 'COPYING' in the top level directory.
     SEND-PR:
     SEND-PR: Please do not send confidential information to the bug report
     SEND-PR: address.  Inspect the file 'problem.pr' for confidential
     SEND-PR: information before mailing.
     SEND-PR:
     % vim problem.pr  # <--- follow instructions at head of file
     % make send-pr

Example 8.7: Problem Report from Failed Logging Target

8.2.4 Stand Alone Problem Reports

The OpenSS7 STREAMS Compatibility package installs the send-pr script and its configuration file send-pr.config in ${libexecdir}/strcompat along with the validation testsuite, see See Test Suites. As with the testsuite, this allows the send-pr script to be used for problem report generation on an installed system that does not have a build directory.

An example of invoking the package testsuite and then generating a problem report for failed cases is shown in autopr:ex2.

     % [sudo] /usr/libexec/strcompat/testsuite
     % # test cases failed...
     % /usr/libexec/strcompat/send-pr
     SEND-PR:
     SEND-PR: send-pr:  send-pr was invoked to generate an external report.  An
     SEND-PR: automated problem report has been created in the file named
     SEND-PR: 'problem.pr' in the current directory.  This problem report can
     SEND-PR: be sent to bugs@openss7.org by calling this script as
     SEND-PR: '/usr/libexec/strcompat/send-pr --file problem.pr'.
     SEND-PR:
     SEND-PR: It is possible to edit some of the fields before sending on the
     SEND-PR: problem report.  Please remember that there is NO WARRANTY.  See
     SEND-PR: the file 'COPYING' in the top level directory.
     SEND-PR:
     SEND-PR: Please do not send confidential information to the bug report
     SEND-PR: address.  Inspect the file 'problem.pr' for confidential
     SEND-PR: information before mailing.
     SEND-PR:
     % vim problem.pr  # <--- follow instructions at head of file
     % /usr/libexec/strcompat/send-pr --file problem.pr

Example 8.8: Invoking send-pr Directly

The advantage of the approach shown in the example is that the send-pr script is capable of collecting the testsuite.log file and the failed test cases and debugging scripts from the testsuite.dir directory and including them in the problem report, as well as all package pertinent information from the installed send-pr.config.

8.3 Known Problems

The OpenSS7 Project does not ship software with known bugs. All bugs are unknown.

Verified behaviour is that behaviour that has been verified by conformance test suites that are shipped with the OpenSS7 STREAMS Compatibility package.

Unverified behaviour may contain unknown bugs.

Please remember that there is NO WARRANTY.

See also Bugs, or file BUGS in the release directory.

Licenses

GNU Affero General Public License


The GNU Affero General Public License.
Version 3, 19 November 2007
     Copyright © 2007 Free Software Foundation, Inc. http://fsf.org/
     
     Everyone is permitted to copy and distribute verbatim copies of this
     license document, but changing it is not allowed.

Preamble

The GNU Affero General Public License is a free, copyleft license for software and other kinds of works, specifically designed to ensure cooperation with the community in the case of network server software.

The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, our General Public Licenses are intended to guarantee your freedom to share and change all versions of a program–to make sure it remains free software for all its users.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things.

Developers that use our General Public Licenses protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License which gives you legal permission to copy, distribute and/or modify the software.

A secondary benefit of defending all users' freedom is that improvements made in alternate versions of the program, if they receive widespread use, become available for other developers to incorporate. Many developers of free software are heartened and encouraged by the resulting cooperation. However, in the case of software used on network servers, this result may fail to come about. The GNU General Public License permits making a modified version and letting the public access it on a server without ever releasing its source code to the public.

The GNU Affero General Public License is designed specifically to ensure that, in such cases, the modified source code becomes available to the community. It requires the operator of a network server to provide the source code of the modified version running there to the users of that server. Therefore, public use of a modified version, on a publicly accessible server, gives the public access to the source code of the modified version.

An older license, called the Affero General Public License and published by Affero, was designed to accomplish similar goals. This is a different license, not a version of the Affero GPL, but Affero has released a new version of the Affero GPL which permits relicensing under this license.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
  1. Definitions.

    “This License” refers to version 3 of the GNU Affero General Public License.

    “Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

    “The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

    To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a work “based on” the earlier work.

    A “covered work” means either the unmodified Program or a work based on the Program.

    To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well.

    To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

    An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.

  2. Source Code.

    The “source code” for a work means the preferred form of the work for making modifications to it. “Object code” means any non-source form of a work.

    A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language.

    The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A “Major Component”, in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

    The “Corresponding Source” for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work.

    The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.

    The Corresponding Source for a work in source code form is that same work.

  3. Basic Permissions.

    All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

    You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you.

    Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

  4. Protecting Users' Legal Rights From Anti-Circumvention Law.

    No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

    When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures.

  5. Conveying Verbatim Copies.

    You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.

    You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.

  6. Conveying Modified Source Versions.

    You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions:

    1. The work must carry prominent notices stating that you modified it, and giving a relevant date.
    2. The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.
    3. You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it.
    4. If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

    A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.

  7. Conveying Non-Source Forms.

    You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:

    1. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.
    2. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.
    3. Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b.
    4. Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements.
    5. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

    A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.

    A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, “normally used” refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.

    “Installation Information” for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made.

    If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM).

    The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network.

    Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying.

  8. Additional Terms.

    “Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions.

    When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission.

    Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms:

    1. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or
    2. Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or
    3. Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or
    4. Limiting the use for publicity purposes of names of licensors or authors of the material; or
    5. Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or
    6. Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors.

    All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying.

    If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

    Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way.

  9. Termination.

    You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11).

    However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

    Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

    Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.

  10. Acceptance Not Required for Having Copies.

    You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so.

  11. Automatic Licensing of Downstream Recipients.

    Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License.

    An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

    You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.

  12. Patents.

    A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's “contributor version”.

    A contributor's “essential patent claims” are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.

    Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.

    In the following three paragraphs, a “patent license” is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party.

    If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid.

    If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.

    A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

    Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law.

  13. No Surrender of Others' Freedom.

    If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program.

  14. Remote Network Interaction; Use with the GNU General Public License.

    Notwithstanding any other provision of this License, if you modify the Program, your modified version must prominently offer all users interacting with it remotely through a network (if your version supports such interaction) an opportunity to receive the Corresponding Source of your version by providing access to the Corresponding Source from a network server at no charge, through some standard or customary means of facilitating copying of software. This Corresponding Source shall include the Corresponding Source for any work covered by version 3 of the GNU General Public License that is incorporated pursuant to the following paragraph.

    Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the work with which it is combined will remain governed by version 3 of the GNU General Public License.

  15. Revised Versions of this License.

    The Free Software Foundation may publish revised and/or new versions of the GNU Affero General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

    Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU Affero General Public License “or any later version” applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU Affero General Public License, you may choose any version ever published by the Free Software Foundation.

    If the Program specifies that a proxy can decide which future versions of the GNU Affero General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program.

    Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version.

  16. Disclaimer of Warranty.

    THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

  17. Limitation of Liability.

    IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

  18. Interpretation of Sections 15 and 16.

    If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to where the full notice is found.

     one line to give the program's name and a brief idea of what it does.
     Copyright (C) year name of author
     
     This program is free software: you can redistribute it and/or modify
     it under the terms of the GNU Affero General Public License as published by
     the Free Software Foundation, either version 3 of the License, or (at
     your option) any later version.
     
     This program is distributed in the hope that it will be useful, but
     WITHOUT ANY WARRANTY; without even the implied warranty of
     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     Affero General Public License for more details.
     
     You should have received a copy of the GNU Affero General Public License
     along with this program.  If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If your software can interact with users remotely through a network, you should also make sure that it provides a way for users to get its source. For example, if your program is a web application, its interface could display a “Source” link that leads users to an archive of the code. There are many ways you could offer source, and different solutions will be better for different programs; see section 13 for the specific requirements.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the GNU AGPL, see http://www.gnu.org/licenses/.

GNU General Public License


GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
     Copyright © 2007 Free Software Foundation, Inc. http://fsf.org/
     
     Everyone is permitted to copy and distribute verbatim copies of this
     license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program–to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
  1. Definitions.

    “This License” refers to version 3 of the GNU General Public License.

    “Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

    “The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

    To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a work “based on” the earlier work.

    A “covered work” means either the unmodified Program or a work based on the Program.

    To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well.

    To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

    An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.

  2. Source Code.

    The “source code” for a work means the preferred form of the work for making modifications to it. “Object code” means any non-source form of a work.

    A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language.

    The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A “Major Component”, in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

    The “Corresponding Source” for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work.

    The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.

    The Corresponding Source for a work in source code form is that same work.

  3. Basic Permissions.

    All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

    You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you.

    Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

  4. Protecting Users' Legal Rights From Anti-Circumvention Law.

    No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

    When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures.

  5. Conveying Verbatim Copies.

    You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.

    You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.

  6. Conveying Modified Source Versions.

    You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions:

    1. The work must carry prominent notices stating that you modified it, and giving a relevant date.
    2. The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.
    3. You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it.
    4. If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

    A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.

  7. Conveying Non-Source Forms.

    You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:

    1. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.
    2. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.
    3. Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b.
    4. Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements.
    5. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

    A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.

    A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, “normally used” refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.

    “Installation Information” for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made.

    If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM).

    The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network.

    Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying.

  8. Additional Terms.

    “Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions.

    When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission.

    Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms:

    1. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or
    2. Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or
    3. Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or
    4. Limiting the use for publicity purposes of names of licensors or authors of the material; or
    5. Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or
    6. Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors.

    All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying.

    If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

    Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way.

  9. Termination.

    You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11).

    However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

    Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

    Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.

  10. Acceptance Not Required for Having Copies.

    You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so.

  11. Automatic Licensing of Downstream Recipients.

    Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License.

    An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

    You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.

  12. Patents.

    A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's “contributor version”.

    A contributor's “essential patent claims” are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.

    Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.

    In the following three paragraphs, a “patent license” is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party.

    If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid.

    If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.

    A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

    Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law.

  13. No Surrender of Others' Freedom.

    If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program.

  14. Use with the GNU Affero General Public License.

    Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such.

  15. Revised Versions of this License.

    The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

    Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License “or any later version” applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation.

    If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program.

    Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version.

  16. Disclaimer of Warranty.

    THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

  17. Limitation of Liability.

    IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

  18. Interpretation of Sections 15 and 16.

    If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to where the full notice is found.

     one line to give the program's name and a brief idea of what it does.
     Copyright (C) year name of author
     
     This program is free software: you can redistribute it and/or modify
     it under the terms of the GNU General Public License as published by
     the Free Software Foundation, either version 3 of the License, or (at
     your option) any later version.
     
     This program is distributed in the hope that it will be useful, but
     WITHOUT ANY WARRANTY; without even the implied warranty of
     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     General Public License for more details.
     
     You should have received a copy of the GNU General Public License
     along with this program.  If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode:

     program Copyright (C) year name of author
     This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
     This is free software, and you are welcome to redistribute it
     under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read http://www.gnu.org/philosophy/why-not-lgpl.html.

GNU Lesser General Public License


GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
     Copyright © 2007 Free Software Foundation, Inc. http://fsf.org/
     
     Everyone is permitted to copy and distribute verbatim copies of this
     license document, but changing it is not allowed.
TERMS AND CONDITIONS

This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional permissions listed below.

  1. Additional Definitions.

    As used herein, “this License” refers to version 3 of the GNU Lesser General Public License, and the “GNU GPL” refers to version 3 of the GNU General Public License.

    “The Library” refers to a covered work governed by this License, other than an Application or a Combined Work as defined below.

    An “Application” is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided by the Library.

    A “Combined Work” is a work produced by combining or linking an Application with the Library. The particular version of the Library with which the Combined Work was made is also called the “Linked Version”.

    The “Minimal Corresponding Source” for a Combined Work means the Corresponding Source for the Combined Work, excluding any source code for portions of the Combined Work that, considered in isolation, are based on the Application, and not on the Linked Version.

    The “Corresponding Application Code” for a Combined Work means the object code and/or source code for the Application, including any data and utility programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work.

  2. Exception to Section 3 of the GNU GPL.

    You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL.

  3. Conveying Modified Versions.

    If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that uses the facility (other than as an argument passed when the facility is invoked), then you may convey a copy of the modified version:

    1. under this License, provided that you make a good faith effort to ensure that, in the event an Application does not supply the function or data, the facility still operates, and performs whatever part of its purpose remains meaningful, or
    2. under the GNU GPL, with none of the additional permissions of this License applicable to that copy.
  4. Object Code Incorporating Material from Library Header Files.

    The object code form of an Application may incorporate material from a header file that is part of the Library. You may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do both of the following:

    1. Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its use are covered by this License.
    2. Accompany the object code with a copy of the GNU GPL and this license document.
  5. Combined Works.

    You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of the following:

    1. Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are covered by this License.
    2. Accompany the Combined Work with a copy of the GNU GPL and this license document.
    3. For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a reference directing the user to the copies of the GNU GPL and this license document.
    4. Do one of the following:
      1. Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.
      2. Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library already present on the user's computer system, and (b) will operate properly with a modified version of the Library that is interface-compatible with the Linked Version.
    5. Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.)
  6. Combined Libraries.

    You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that are not Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of the following:

    1. Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed under the terms of this License.
    2. Give prominent notice with the combined library that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work.
  7. Revised Versions of the GNU Lesser General Public License.

    The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

    Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License “or any later version” applies to it, you have the option of following the terms and conditions either of that published version or of any later version published by the Free Software Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software Foundation.

    If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall apply, that proxy's public statement of acceptance of any version is permanent authorization for you to choose that version for the Library.

END OF TERMS AND CONDITIONS

GNU Free Documentation License


GNU FREE DOCUMENTATION LICENSE
Version 1.1, March 2000
     Copyright © 2000 Free Software Foundation, Inc.
     59 Temple Place, Suite 330, Boston, MA  02111-1307, USA
     
     Everyone is permitted to copy and distribute verbatim copies
     of this license document, but changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document free in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
  1. APPLICABILITY AND DEFINITIONS

    This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. The “Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”.

    A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

    A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

    The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License.

    The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License.

    A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, whose contents can be viewed and edited directly and straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent modification by readers is not Transparent. A copy that is not “Transparent” is called “Opaque”.

    Examples of suitable formats for Transparent copies include plain ascii without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML produced by some word processors for output purposes only.

    The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, “Title Page” means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

  2. VERBATIM COPYING

    You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

    You may also lend copies, under the same conditions stated above, and you may publicly display copies.

  3. COPYING IN QUANTITY

    If you publish printed copies of the Document numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

    If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

    If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-network location containing a complete Transparent copy of the Document, free of added material, which the general network-using public has access to download anonymously at no charge using public-standard network protocols. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

    It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

  4. MODIFICATIONS

    You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

    1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
    2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has less than five).
    3. State on the Title page the name of the publisher of the Modified Version, as the publisher.
    4. Preserve all the copyright notices of the Document.
    5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
    6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
    7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
    8. Include an unaltered copy of this License.
    9. Preserve the section entitled “History”, and its title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
    10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
    11. In any section entitled “Acknowledgments” or “Dedications”, preserve the section's title, and preserve in the section all the substance and tone of each of the contributor acknowledgments and/or dedications given therein.
    12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
    13. Delete any section entitled “Endorsements”. Such a section may not be included in the Modified Version.
    14. Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant Section.

    If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

    You may add a section entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

    You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

    The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

  5. COMBINING DOCUMENTS

    You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice.

    The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

    In the combination, you must combine any sections entitled “History” in the various original documents, forming one section entitled “History”; likewise combine any sections entitled “Acknowledgments”, and any sections entitled “Dedications”. You must delete all sections entitled “Endorsements.”

  6. COLLECTIONS OF DOCUMENTS

    You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

    You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

  7. AGGREGATION WITH INDEPENDENT WORKS

    A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an “aggregate”, and this License does not apply to the other self-contained works thus compiled with the Document, on account of their being thus compiled, if they are not themselves derivative works of the Document.

    If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one quarter of the entire aggregate, the Document's Cover Texts may be placed on covers that surround only the Document within the aggregate. Otherwise they must appear on covers around the whole aggregate.

  8. TRANSLATION

    Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License provided that you also include the original English version of this License. In case of a disagreement between the translation and the original English version of this License, the original English version will prevail.

  9. TERMINATION

    You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

  10. FUTURE REVISIONS OF THIS LICENSE

    The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

    Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

END OF TERMS AND CONDITIONS

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

       Copyright (C)  year  your name.
       Permission is granted to copy, distribute and/or modify this document
       under the terms of the GNU Free Documentation License, Version 1.1
       or any later version published by the Free Software Foundation;
       with the Invariant Sections being list their titles, with the
       Front-Cover Texts being list, and with the Back-Cover Texts being list.
       A copy of the license is included in the section entitled ``GNU
       Free Documentation License''.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

Indices

Index of Concepts

Index of Data Types

Index of Functions and Macros

Index of Variables and Constants

Index of Files and Programs

Index of Configuration Options

Index of Makefile Targets

Index of Authors

Index of Manual Pages Referenced

Table of Contents


Footnotes

[1] Formerly X/Open and UNIX International.

[2] Note that these are kernel modules and are not STREAMS modules.

[3] See GNU/Linux Distributions, for more information.

[4] If you are using a Debian release, please make sure to install the groff extension package (‘groff_ext’), as it contains the refer or grefer commands necessary for including references in the manual pages.

[5] A wide range of net-snmp releases are supported, from UCD-SNMP 4.2.5 through net-snmp 5.4.

[6] Although, at one time, this package supported LiS, LiS is now deprecated and unsupported.

[7] Please see Problem Reports, or the file PROBLEMS in the release directory for more information on filing a proper Problem Report.

[8] The OpenSS7 Project really has no vested interest in promoting Linux Fast-STREAMS over LiS. The project uses Linux Fast-STREAMS instead of LiS based on technical merit alone. The OpenSS7 Project has released both LiS and Linux Fast-STREAMS packages and has provided support for both packages up until the production release of Linux Fast-STREAMS. Many of the OpenSS7 Project STREAMS modules and drivers will still run under LiS, albeit with far less performance far poorer conformance to standards, and the all too frequent kernel crashes experienced with LiS.

[9] The kernel version ‘2.4.20-28.7’ is just and example. For the running kernel, ‘uname -r’ is expected.

[10] The kernel version ‘2.4.20-28.7’ is just and example. For the running kernel, ‘uname -r’ is expected.

[11] Note that on some systems, /usr/libexec does not exist, and /usr/lib is used instead.

[12] Note that macro and reference databse files are not installed if the package is configured for cooked manpages.

[13] One of the major reasons for using this non-standard subdirectory is to avoid conflict with header files already located in the /usr/include directory.

[14] The kernel version ‘2.4.20-28.7’ if just an example. For the running kernel, use the output of ‘uname -r’.

[15] Although the OpenSS7 STREAMS Compatibility package has, in the past, built and installed over LiS, because LiS lacked the base compatibility offered by Linux Fast-STREAMS, the compatibility offered by this package in conjunction with LiS was simple functional declaration compatibility only.

[16] Lately the OpenSS7 Project has moved away from using OpenSS7 defined helper functions and move toward using the MPS functions instead. Many of the OpenSS7 utilities predate the compatibility modules and were developed in ignorance of the existing helper functions defined by Mentat and Sun. As such, most OpenSS7 communications protocol stacks require this module to be present on the system.

[17] Linux STREAMS is buggy, unsupported and deprecated. Do not use it.

[18] Linux STREAMS is buggy, unsupported and deprecated. Do not use it.

[19] Linux STREAMS is buggy, unsupported and deprecated. Do not use it.

[20] See GNU/Linux Distributions, for more information.

[21] If you are using a Debian release, please make sure to install the groff extension package (‘groff_ext’), as it contains the refer or grefer commands necessary for including references in the manual pages.

[22] A wide range of net-snmp releases are supported, from UCD-SNMP 4.2.5 through net-snmp 5.4.

[23] Although, at one time, this package supported LiS, LiS is now deprecated and unsupported.

[24] Items marked as ‘TBD’ are scheduled to have support deprecated. That is, in a future release, the distributions marked ‘TBD’ will not longer be validated before release.

[25] At a later date, it is possible to move this package into the kernel, however, with continued resistance to STREAMS from within the Linux developer community, this is currently unlikely.

[26] Linux STREAMS is buggy, unsupported and deprecated. Do not use it.

[27] See sections Disclaimer of Warranty and Limitation of Liability under GNU Affero General Public License.

[28] Not all distributions support the ‘%dev’ RPM macro: a case in point is the SuSE 8.0 distribution which uses an older version of rpm(1). Distributions that do not support the ‘%dev’ macro will build devices as a ‘%post’ operation. Note also that not all release packages contain devices. Only packages that provide STREAMS character device drivers need devices, and then only when the ‘specfs’ or ‘devfsd’ is not being used.

[29] Note that not all releases have source RPM packages. Release packages that do not contain kernel modules do not generate a source RPM package.

[30] Note that not all release packages contain shared libraries, and, therefore, not all release packages contain this package.

[31] Note that on Mandrakelinux, unlike other RPM kernel distributions, kernel packages for the ix86 architectures are always placed in i586 architecture packages regardless of the true processor architecture of the kernel package. configure detects this and builds the appropriate packages.

[32] Note that the ‘_kversion’ of ‘2.4.20-28.7’ is only an example. Note also that only release packages that contain kernel modules will contain a core subpackage.

[33] Note that only release packages that contain kernel modules and that export versioned symbols will contain a info subpackage. Also, this subpackage is only applicable to 2.4 series kernels and is not necessary and not built for 2.6 series kernels.

[34] Note that the ‘_kversion’ of ‘2.4.20-28.7’ is only an example.

[35] Note that the ‘_kversion’ of ‘2.4.20-28.7’ is only an example.

[36] Note that the ‘_kversion’ of ‘2.4.20-28.7’ is only an example.

[37] Note that only release packages that contain kernel modules and that export versioned symbols will contain a LiS-info subpackage.

[38] Note that the ‘_kversion’ of ‘2.4.20-28.7’ is only an example.

[39] Note that only release packages that contain kernel modules and that export versioned symbols will contain a streams-info subpackage.

[40] Note that the ‘_kversion’ of ‘2.4.20-28.7’ is only an example.

[41] Note that not all release packages contain devices. Only packages that provide STREAMS character device drivers need devices, and then only when the ‘specfs’ or ‘devfsd’ is not being used.

[42] Note that not all releases have source DEB packages. Release packages that do not contain kernel modules do not generate a source DEB package.

[43] Note that not all release packages contain shared libraries, and, therefore, not all release packages contain this package.

[44] Note that on Mandrakelinux, unlike other DEB kernel distributions, kernel packages for the ix86 architectures are always placed in i586 architecture packages regardless of the true processor architecture of the kernel package. configure detects this and builds the appropriate packages.

[45] Note that the ‘_kversion’ of ‘2.4.20-28.7’ is only an example. Note also that only release packages that contain kernel modules will contain a core subpackage.

[46] Note that only release packages that contain kernel modules and that export versioned symbols will contain a info subpackage. Also, this subpackage is only applicable to 2.4 series kernels and is not necessary and not built for 2.6 series kernels.

[47] Note that the ‘_kversion’ of ‘2.4.20-28.7’ is only an example.

[48] Note that the ‘_kversion’ of ‘2.4.20-28.7’ is only an example.

[49] Note that the ‘_kversion’ of ‘2.4.20-28.7’ is only an example.

[50] Note that only release packages that contain kernel modules and that export versioned symbols will contain a LiS-info subpackage.

[51] Note that the ‘_kversion’ of ‘2.4.20-28.7’ is only an example.

[52] Note that only release packages that contain kernel modules and that export versioned symbols will contain a streams-info subpackage.

[53] Note that the ‘_kversion’ of ‘2.4.20-28.7’ is only an example.

[54] Older version of bison (2.0) and the older version of flex (2.5.4a) are also suitable. Where possible, use the more recent bison 2.3 and flex 2.5.33.

[55] A notable exception is Debian and Fedora 7. Note that on Fedora 7 the gettext-devel package must be installed.

[56] In particular, for CentOS, Fedora 6 or 7, the tetex-latex and gnuplot packages must be loaded as well. Note also that the latex2html used to be part of the textex package (or subpackages) but is now often packaged on its own. Recent distributions such as SUSE 11.0 and Fedora 9 use the texlive package instead of the tetex package.

[57] Note that the ‘_kversion’ of ‘2.4.20-28.7’ is only an example.

[58] Note that the ‘_kversion’ of ‘2.4.20-28.7’ is only an example. Also, note that the ‘info’ subpackage is only applicable to the 2.4 kernel series.

[59] In particular, some Debian systems do not load the groff(1) extensions package and do not have grefer(1) installed. Although this is an oversight on the configuration of the particular Debian system, we accomodate such misconfiguration with this feature.

[60] In particular, some Debian or Ubuntu systems do not load the groff(1) extensions package and do not have grefer(1) installed. Although this is an oversight on the configuration of the particular Debian or Ubuntu system, we accomodate such misconfiguration with this feature.

[61] Note that the ‘_kversion’ of ‘2.4.20-28.7’ is only an example.

[62] Note that the ‘_kversion’ of ‘2.4.20-28.7’ is only an example.

[63] Because it is a cross-build, the kernel version on the build machine is unlikely to be the kernel version of the target machine, except by coincidence.

[64] Note that the ‘_kversion’ of ‘2.4.20-28.7’ is only an example.

[65] /usr/libexec/strcompat is just an example, the actual location is ${libexecdir}/${PACKAGE}, which varies from distribution to distribution (as some distributions such as Mandriva do not have a libexec directory).

[66] Therefore, it is possible to download the package, configure it, and then uninstall it. This is handy if you do not have the sources used to build and install the package immediately available.

[67] This is useful from the OpenSS7 Master Package.

[68] Theoretically this is true, however, the OpenSS7 Project does not use any maintainer programs that are not generally available (i.e. open source).

[69] Note that because logging targets invoke a pipe, automake(1) does not return the correct return status (always returns success if the tee(1) operation is successful). Therefore, these targets should not be invoked by scripts that need to use the return value from automake(1).

[70] This particular check has caught some name space pollution that has occurred in the 2.6.11 kernel.

[71]send-pr’ launches the user's EDITOR to edit the problem report before submitting it.


OpenSS7
SS7 for the
Common Man
Home Top Index First Prev Next Last More Download Info FAQ Mail  Home -> Documentation -> Manuals -> strcompat Manual
Last modified: Thu, 30 Nov 2006 15:29:10 GMT
© Copyright 1997-2007 OpenSS7 Corporation All Rights Reserved.