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Abstract

With the objective of contrasting performance between
STREAMS and legacy approaches to system facilities, a
comparison is made between the tested performance of the
Linux Native Sockets UDP implementation and STREAMS
TPI UDP and XTIoS UDP implementations using the Linux
Fast-STREAMS package [LfS].

1 Background

UNIX networking has a rich history. The TCP/IP protocol
suite was first implemented by BBN using Sockets under a
DARPA research project on 4.1aBSD and then incorporated
by the CSRG into 4.2BSD [MBKQ97]. Lachmann and As-
sociates (Legent) subsequently implemented one of the first
TCP/IP protocol suite based on the Transport Provider In-
terface (TPI) [TLI92] and STREAMS [GC94]. Two other
predominant TCP/IP implementations on STREAMS sur-
faced at about the same time: Wollongong and Mentat.

1.1 STREAMS

STREAMS is a facility first presented in a paper by Den-
nis M. Ritchie in 1984 [Rit84], originally implemented on
4.1BSD and later part of Bell Laboratories Eighth Edi-
tion UNIX, incorporated into UNIX System V Release 3
and enhanced in UNIX Sysvem V Release 4 and further in
UNIX System V Release 4.2. STREAMS was used in SVR4
for terminal input-output, pseudo-terminals, pipes, named
pipes (FIFOs), interprocess communication and network-
ing. STREAMS was used in SVR3 for networking (with
the NSU package). Since its release in System V Release
3, STREAMS has been implemented across a wide range
of UNIX, UNIX-like and UNIX-based systems, making its
implementation and use an ipso facto standard.

STREAMS is a facility that allows for a reconfigurable
full duplex communications path, Stream, between a user
process and a driver in the kernel. Kernel protocol modules
can be pushed onto and popped from the Stream between
the user process and driver. The Stream can be reconfigured
in this way by a user process. The user process, neighbour-
ing protocol modules and the driver communicate with each
other using a message passing scheme. This permits a loose
coupling between protocol modules, drivers and user pro-
cesses, allowing a third-party and loadable kernel module
approach to be taken toward the provisioning of protocol
modules on platforms supporting STREAMS.

On UNIX System V Release 4.2, STREAMS was used

for terminal input-output, pipes, FIFOs (named pipes),
and network communications. Modern UNIX, UNIX-like
and UNIX-based systems providing STREAMS normally
support some degree of network communications using
STREAMS; however, many do not support STREAMS-
based pipe and FIFOs1 or terminal input-output.2

UNIX System V Release 4.2 supported four Application
Programmer Interfaces (APIs) for accessing the network
communications facilities of the kernel:

Transport Layer Interface (TLI). TLI is an acronym for the
Transport Layer Interface [TLI92]. The TLI was the
non-standard interface provided by SVR4, later stan-
dardized by X/Open as the XTI described below. This
interface is now deprecated.

X/Open Transport Interface (XTI). XTI is an acronym for
the X/Open Transport Interface [XTI99]. The X/Open
Transport Interface is a standardization of the UNIX
System V Release 4, Transport Layer Interface. The
interface consists of an Application Programming Inter-
face implemented as a shared object library. The shared
object library communicates with a transport provider
Stream using a service primitive interface called the
Transport Provider Interface.

While XTI was implemented directly over STREAMS
devices supporting the Transport Provider Interface
(TPI) [TPI99] under SVR4, several non-traditional ap-
proaches exist in implementation:

Berkeley Sockets. Sockets uses the BSD interface that was
developed by BBN for TCP/IP protocol suite under
DARPA contract on 4.1aBSD and released in 4.2BSD.
BSD Sockets provides a set of primary API functions
that are typically implemented as system calls. The
BSD Sockets interface is non-standard and is now dep-
recated in favour of the POSIX/SUS standard Sockets
interface.

POSIX Sockets. Sockets were standardized by the Open-
Group [OG] and IEEE in the POSIX standardization
process. They appear in XNS 5.2 [XNS99], SUSv1
[SUS95], SUSv2 [SUS98] and SUSv3 [SUS03].

∗bidulock@openss7.org

1. For example, AIX.

2. For example, HP-UX.
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On systems traditionally supporting Sockets and then
retrofitted to support STREAMS, there is one approach to-
ward supporting XTI without refitting the entire networking
stack:3

XTI over Sockets. Several implementations of STREAMS
on UNIX utilize the concept of TPI over Sockets.
Following this approach, a STREAMS pseudo-device
driver is provided that hooks directly into internal
socket system calls to implement the driver, and yet the
networking stack remains fundamentally BSD in style.

Typically there are two approaches to implementing XTI
on systems not supporting STREAMS:

XTI Compatibility Library. Several implementations of XTI
on UNIX utilize the concept of an XTI compatibility li-
brary.4 This is purely a shared object library approach
to providing XTI. Under this approach it is possible to
use the XTI application programming interface, but it
is not possible to utilize any of the STREAMS capa-
bilities of an underlying Transport Provider Interface
(TPI) stream.

TPI over Sockets. An alternate approach, taken by the
Linux iBCS package was to provide a pseudo-transport
provider using a legacy character device to present the
appearance of a STREAMS transport provider.

Conversely, on systems supporting STREAMS, but not
traditionally supporting Sockets (such as SVR4), there are
four approaches toward supporting BSD and POSIX Sockets
based on STREAMS:

Compatibility Library Under this approach, a compatibility
library (libsocket.o) contains the socket calls as li-
brary functions that internally invoke the TLI or TPI in-
terface to an underlying STREAMS transport provider.
This is the approach originally taken by SVR4 [GC94],
but this approach has subsequently been abandoned due
to the difficulties regarding fork(2) and fundamental in-
compatibilities deriving from a library only approach.

Library and cooperating STREAMS module. Under this
approach, a cooperating module, normally called
sockmod, is pushed on a Transport Provider Interface
(TPI) Stream. The library, normally called socklib
or simply socket, and cooperating sockmod module
provide the BBN or POSIX Socket API. [VS90] [Mar01]

Library and System Calls. Under this approach, the BSD or
POSIX Sockets API is implemented as system calls with
the sole exception of the socket(3) call. The underly-
ing transport provider is still an TPI -based STREAMS
transport provider, it is just that system calls instead
of library calls are used to implement the interface.
[Mar01]

System Calls. Under this approach, even the socket(3)
call is moved into the kernel. Conversion between
POSIX/BSD Sockets calls and TPI service primi-
tives is performed completely within the kernel. The
sock2path(5) configuration file is used to configure the
mapping between STREAMS devices and socket types
and domains [Mar01].

1.1.1 Standardization.

During the POSIX standardization process, networking and
Sockets interfaces were given special treatment to ensure
that both the legacy Sockets approach and the STREAMS
approach to networking were compatible. POSIX has stan-
dardized both the XTI and Sockets programmatic interface
to networking. STREAMS networking has been POSIX
compliant for many years, BSD Sockets, POSIX Sockets,
TLI and XTI interfaces, and were compliant in the SVR4.2
release. The STREAMS networking provided by Linux Fast-
STREAMS package provides POSIX compliant networking.

Therefore, any application utilizing a Socket or Stream
in a POSIX compliant manner will also be compatible with
STREAMS networking.5

1.2 Linux Fast-STREAMS

The first STREAMS package for Linux that provided SVR4
STREAMS capabilities was the Linux STREAMS (LiS)
package originally available from GCOM [LiS]. This pack-
age exhibited incompatibilities with SVR 4.2 STREAMS
and other STREAMS implementations, was buggy and per-
formed very poorly on Linux. These difficulties prompted
the OpenSS7 Project [SS7] to implement an SVR 4.2
STREAMS package from scratch, with the objective of pro-
duction quality and high-performance, named Linux Fast-
STREAMS [LfS].

The OpenSS7 Project also maintains public and inter-
nal versions of the LiS package. The last public release
was LiS-2.18.3 ; the current internal release version is LiS-
2.18.6. The current production public release of Linux Fast-
STREAMS is streams-0.9.3.

2 Objective

The question has been asked whether there are perfor-
mance differences between a purely BSD-style approach and
a STREAMS approach to TCP/IP networking, cf. [RBD97].
However, there did not exist a system which permitted
both approaches to be tested on the same operating sys-
tem. Linux Fast-STREAMS running on the GNU/Linux
operating system now permits this comparison to be made.
The objective of the current study, therefore, was to deter-
mine whether, for the Linux operating system, a STREAMS-
based approach to TCP/IP networking is a viable replace-
ment for the BSD-style sockets approach provided by Linux,
termed NET4.

When developing STREAMS, the authors oft times found
that there were a number of preconceptions espoused by
Linux advocates about both STREAMS and STREAMS-
based networking, as follows:

• STREAMS is slow.

• STREAMS is more flexible, but less efficient [LML].

• STREAMS performs poorly on uniprocessor and ever
poorer on SMP.

3. This approach is taken by True64 (Digital) UNIX.

4. One was even available for Linux at one point.

5. This compatibility is exemplified by the netperf program which
does not distinguish between BSD or STREAMS based networking in
their implementation or use.
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• STREAMS networking is slow.

• STREAMS networking is unnecessarily complex and
cumbersome.

For example, the Linux kernel mailing list has this to say
about STREAMS:

(REG) STREAMS allow you to ”push” filters onto a net-
work stack. The idea is that you can have a very
primitive network stream of data, and then ”push” a
filter (”module”) that implements TCP/IP or what-
ever on top of that. Conceptually, this is very nice,
as it allows clean separation of your protocol layers.
Unfortunately, implementing STREAMS poses many
performance problems. Some Unix STREAMS based
server telnet implementations even ran the data up
to user space and back down again to a pseudo-tty
driver, which is very inefficient.

STREAMS will never be available in the standard
Linux kernel, it will remain a separate implementation
with some add-on kernel support (that come with the
STREAMS package). Linus and his networking gurus
are unanimous in their decision to keep STREAMS
out of the kernel. They have stated several times on
the kernel list when this topic comes up that even
optional support will not be included.

(REW, quoting Larry McVoy) ”It’s too bad, I can see
why some people think they are cool, but the perfor-
mance cost - both on uniprocessors and even more so
on SMP boxes - is way too high for STREAMS to ever
get added to the Linux kernel.”

Please stop asking for them, we have agreement
amoungst the head guy, the networking guys, and the
fringe folks like myself that they aren’t going in.

(REG, quoting Dave Grothe, the STREAMS guy)
STREAMS is a good framework for implementing
complex and/or deep protocol stacks having nothing
to do with TCP/IP, such as SNA. It trades some
efficiency for flexibility. You may find the Linux
STREAMS package (LiS) to be quite useful if
you need to port protocol drivers from Solaris or
UnixWare, as Caldera did.

The Linux STREAMS (LiS) package is available for down-
load if you want to use STREAMS for Linux. The fol-
lowing site also contains a dissenting view, which supports
STREAMS.

The current study attempts to determine the validity of
these preconceptions.

3 Description

Three implementations are tested:

Linux Kernel UDP (udp).

The native Linux socket and networking system.

OpenSS7 STREAMS XTIoS inet Driver.

A STREAMS pseudo-device driver that communicates
with a socket internal to the kernel.

The OpenSS7 implementation of STREAMS XTI over
Sockets implementation of UDP. While the imple-
mentation uses the Transport Provider Interface and
STREAMS to communicate with the driver, internal
to the driver a UDP Socket is opened and conversion
between STREAMS and Sockets performed.

OpenSS7 STREAMS TPI UDP Driver udp.

A STREAMS pseudo-device driver that fully imple-
ments UDP and communicates with the IP layer in the
kernel.

The three implementations tested vary in their implemen-
tation details. These implementation details are described
below.

3.1 Linux Kernel UDP

Normally, in BSD-style implementations of Sockets, Sockets
is not merely the Application Programmer Interface, but
also consists of a more general purpose network protocol
stack implementation [MBKQ97], even though the mecha-
nism is not used for more than TCP/IP networking. [GC94]

Although BSD networking implementations consist of a
number of networking layers with soft interrupts used for
each layer of the networking stack [MBKQ97], the Linux
implementation, although based on the the BSD approach,
tightly integrates the socket, protocol, IP and interface lay-
ers using specialized interfaces. Although roughly corre-
sponding to the BSD stack as illustrated in Figure 1, the
socket, protocol and interface layers in the BSD stack have
well defined, general purpose interfaces applicable to a wider
range of networking protocols.

TCP UDP SCTP

Linux NET4

IP

Layer

Interface

SocketSocket

Protocol

Interface

Protocol

Interface

Protocol

Interface

TCP UDP SCTP

IP

Interface

Figure 1: Sockets: BSD and Linux

Both Linux UDP implementations are a good example of
the tight integration between the components of the Linux
networking stack.

Write side processing. On the write side of the Socket,
bytes are copied from the user into allocated socket buffers.
Write side socket buffers are charged against the send buffer.
Socket buffers are immediately dispatched to the IP layer for
processing. When the IP layer (or a driver) consumes the
socket buffer, it releases the amount of send buffer space that
was charged for the send buffer. If there is insufficient space
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in the send buffer to accommodate the write, the calling
processed is either blocked or the system call returns an
error (ENOBUFS).

For loop-back operation, immediately sending the socket
buffer to the IP layer has the additional ramification that
the socket buffer is immediately struck from the send buffer
and immediately added to the receive buffer on the receiving
socket. Therefore, the size of the send buffer or the send low
water mark, have no effect.

Read side processing. On the read side of the Socket,
the network layer calls the protocol’s receive function. The
receive function checks if socket is locked (by a reading or
writing user). If the socket is locked the socket buffer placed
in the socket’s backlog queue. The backlog queue can hold
a maximum number of socket buffers. If this maximum is
exceeded, the packet is dropped. If the socket is unlocked,
and the socket buffer will fit in the socket’s receive buffer,
the socket buffer is charged against the receive buffer. If
the socket buffer will not fit in the receive buffer, the socket
buffer is dropped.

Read side processing under Linux does not differ from
BSD, except for loop-back devices. Normally, for non-loop-
back devices, skbuffs received by the device are queued
against the IP layer and the IP layer software interrupt is
raised. When the software interrupt runs, skbuffss are de-
livered directly to the transport protocol layer without in-
termediate queueing [MBKQ97].

For loop-back operation, however, Linux skips queueing
at the IP protocol layer (which does not exist as it does in
BSD) and, instead, delivers skbuffs directly to the trans-
port protocol.

Due to this difference between Linux and BSD on the read
side, it is expected that performance results for Linux would
vary from that of BSD, and the results of this testing would
therefore not be directly applicable to BSD.

Buffering. Buffering at the Socket consist of a send buffer
and low water mark and a receive buffer and low water mark.
When the send buffer is consumed with outstanding mes-
sages, writing processes will either block or the system call
will fail with an error (ENOBUFS). When the send buffer is
full higher than the low water mark, a blocked writing pro-
cess will not be awoken (regardless of whether the process
is blocked in write or blocked in poll/select). The send low
water mark for Linux is fixed at one-half of the send buffer.

It should be noted that for loop-back operation under
Linux, the send buffering mechanism is effectively defeated.

When the receive buffer is consumed with outstanding
messages, received messages will be discarded. This is in
rather stark contrast to BSD where messages are effectively
returned to the network layer when the socket receive buffer
is full and the network layer can determine whether messages
should be discarded or queued further [MBKQ97].

When there is no data in the receive buffer, the reading
process will either block or return from the system call with
an error (ENOBUFS again). When the receive buffer has fewer
bytes of data in it than the low water mark, a blocked read-
ing process will not be awoken (regardless of whether the
process is blocked in write or blocked in poll/select). The
receive low water mark for Linux is typically set to BSD

default of 1 byte.6

It should be noted that the Linux buffering mechanism
does not have hysteresis like that of STREAMS. When the
amount of data in the send buffer exceeds the low water
mark, poll will cease to return POLLOUT; when the receive
buffer is less than the low water mark, poll will cease to
return POLLIN.

Scheduling. Scheduling of processes and the buffering
mechanism are closely related.

Writing processes for loop-back operation under UDP are
allowed to spin wildly. Written data charged against the
send buffer is immediately released when the loop-back in-
terface is encountered and immediately delivered to the re-
ceiving socket (or discarded). If the writing process is writ-
ing data faster that the reading process is consuming it, the
excess will simply be discarded, and no back-pressure sig-
nalled to the sending socket.

If receive buffer sizes are sufficiently large, the writing
process will lose the processor on uniprocessor systems and
the reading process scheduled before the buffer overflows; if
they are not, the excess will be discarded. On multiprocessor
systems, provided that the read operation takes less time
than the write operation, the reading process will be able to
keep pace with the writing process. If the receiving process is
run with a very low priority, the writing process will always
have the processor and a large percentage of the written
messages will be discarded.

It should be noted that this is likely a Linux-specific de-
ficiency as the BSD system introduces queueing, even on
loop-back.

Reading processes for loop-back operation under UDP are
awoken whenever a single byte is received (due to the default
receive low water mark). If the reading process has higher
priority than the writing process on uniprocessors, the read-
ing process will be awoken for each message sent and the
reading process will read that message before the writing
process is permitted to write another. On SMP systems,
because reading processes will likely have the socket locked
while reading each message, backlog processing will likely be
invoked.

3.2 Linux Fast-STREAMS

Linux Fast-STREAMS is an implementation of SVR4.2
STREAMS for the GNU/Linux system developed by the
OpenSS7 Project [SS7] as a replacement for the buggy,
under-performing and now deprecated Linux STREAMS
(LiS) package. Linux Fast-STREAMS provides the
STREAMS executive and interprocess communication facil-
ities (pipes and FIFOs). Add-on packages provide compati-
bility between Linux Fast-STREAMS and other STREAMS
implementations, a complete XTI shared object library, and
transport providers. Transport providers for the TCP/IP
suite consist of an inet driver that uses the XTI over Sock-
ets approach as well as a full STREAMS implementation of
SCTP (Stream Control Transmission Protocol), UDP (User
Datagram Protocol) and RAWIP (Raw Internet Protocol).

6. The fact that Linux sets the receive low water mark to 1 byte is an
indication that the buffering mechanism on the read side simply does
not work.
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3.2.1 XTI over Sockets

The XTI over Sockets implementation is the inet
STREAMS driver developed by the OpenSS7 Project [SS7].
As illustrated in Figure 2, this driver is implemented as a
STREAMS pseudo-device driver and uses STREAMS for
passing TPI service primitives to and from upstream mod-
ules or the Stream head. Within the driver, data and other
TPI service primitives are translated into kernel socket calls
to a socket that was opened by the driver corresponding to
the transport provider instance. Events received from this
internal socket are also translated into transport provider
service primitives and passed upstream.

Protocol

Interface

TCP UDP SCTP

Linux NET4

IP

Layer

Interface

Stream head Socket

inet

Driver

Figure 2: XTI over Sockets inet Driver

Write side processing. Write side processing uses stan-
dard STREAMS flow control mechanisms as are described
for TPI, below, with the exception that once the message
blocks arrive at the driver they are passed to the internal
socket. Therefore, a unique characteristic of the write side
processing for the XTI over Sockets driver is that data is
first copied from user space into STREAMS message blocks
and then copied again from the STREAMS message blocks
to the socket. This constitutes two copies per byte versus
one copy per byte and has a significant impact on the per-
formance of the driver at large message sizes.7

Read side processing. Read side processing uses stan-
dard STREAMS flow control mechanisms as are described
for TPI, below. A unique characteristic of the read side pro-
cessing fro the XTI over Sockets driver is that data is first
copied from the internal socket to a STREAMS message
block and then copied again from the STREAMS message
block to user space. This constitutes two copies per byte
versus one copy per byte and has a significant impact on the
performance of the driver at large message sizes.8

Buffering. Buffering uses standard STREAMS queueing
and flow control mechanisms as are described for TPI, below.

Scheduling. Scheduling resulting from queueing and flow
control are the same as described for TPI below. Considering
that the internal socket used by the driver is on the loop-
back interface, data written on the sending socket appears
immediately at the receiving socket or is discarded.

3.2.2 STREAMS TPI

The STREAMS TPI implementation of UDP is a direct
STREAMS implementation that uses the udp driver de-
veloped by the OpenSS7 Project [SS7]. As illustrated in
Figure 3, this driver interfaces to Linux at the network
layer, but provides a complete STREAMS implementation
of the transport layer. Interfacing with Linux at the net-
work layer provides for de-multiplexed STREAMS architec-
ture [RBD97]. The driver presents the Transport Provider
Interface (TPI) [TPI99] for use by upper level modules and
the XTI library [XTI99].

Protocol

Interface

TCP UDP SCTP

Linux NET4

IP

Layer

Interface

Stream head Socket

Driver

udp

Figure 3: STREAMS udp Driver

Linux Fast-STREAMS also provides a raw IP driver (raw)
and an SCTP driver (sctp) that operate in the same fashion
as the udp driver. That is, performing all transport proto-
col functions within the driver and interfacing to the Linux
NET4 IP layer. One of the project objectives of performing
the current testing was to determine whether it would be
worth the effort to write a STREAMS transport implemen-
tation of TCP, the only missing component in the TCP/IP
suite that necessitates the continued support of the XTI over
Sockets (inet) driver.

Write side processing. Write side processing follows
standard STREAMS flow control. When a write occurs at
the Stream head, the Stream head checks for downstream

7. This expectation of peformance impact is held up by the test re-
sults.

8. This expectation of peformance impact is held up by the test re-
sults.
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flow control on the write queue. If the Stream is flow con-
trolled, the calling process is blocked or the write system call
fails (EAGAIN). When the Stream is not flow controlled, user
data is transferred to allocated message blocks and passed
downstream. When the message blocks arrive at a down-
stream queue, the count of the data in the message blocks is
added to to the queue count. If the queue count exceeds the
high water mark defined for the queue, the queue is marked
full and subsequent upstream flow control tests will fail.

Read side processing. Read side processing follows stan-
dard STREAMS flow control. When a read occurs at the
Stream head, the Stream head checks the read queue for mes-
sages. If the read queue has no messages queued, the queue
is marked to be enabled when messages arrive and the call-
ing process is either blocked or the system call returns an
error (EAGAIN). If messages exist on the read queue, they
are dequeued and data copied from the message blocks to
the user supplied buffer. If the message block is completely
consumed, it is freed; otherwise, the message block is placed
back on the read queue with the remaining data.

Buffering. Buffering follows the standard STREAMS
queueing and flow control mechanisms. When a queue is
found empty by a reading process, the fact that the queue
requires service is recorded. Once the first message arrives
at the queue following a process finding the queue empty,
the queue’s service procedure will be scheduled with the
STREAMS scheduler. When a queue is tested for flow con-
trol and the queue is found to be full, the fact that a process
wishes to write the to queue is recorded. When the count
of the data on the queue falls beneath the low water mark,
previous queues will be back enabled (that is, their service
procedures will be scheduled with the STREAMS scheduler).

Scheduling. When a queue downstream from the stream
head write queue is full, writing processes either block or
fail with an error (EAGAIN). When the forward queue’s count
falls below its low water mark, the stream head write queue
is back-enabled. Back-enabling consists of scheduling the
queue’s service procedure for execution by the STREAMS
scheduler. Only later, when the STREAMS scheduler runs
pending tasks, does any writing process blocked on flow con-
trol get woken.

When a stream head read queue is empty and a reading
processes either block or fail with an error (EAGAIN ). When
a message arrives at the stream head read queue, the service
procedure associated with the queue is scheduled for later
execution by the STREAMS scheduler. Only later, when the
STREAMS scheduler runs pending tasks, does any reading
process blocked awaiting messages get awoken.

4 Method

To test the performance of STREAMS networking, the
Linux Fast-STREAMS package was used [LfS]. The Linux
Fast-STREAMS package builds and installs Linux load-
able kernel modules and includes the modified netperf and
iperf programs used for testing.

Test Program. One program used is a version of the
netperf network performance measurement tool developed
and maintained by Rick Jones for Hewlett-Packard. This

modified version is available from the OpenSS7 Project
[Jon07]. While the program is able to test using both POSIX
Sockets and XTI STREAMS interfaces, modifications were
required to the package to allow it to compile for Linux Fast-
STREAMS.

The netperf program has many options. Therefore, a
benchmark script (called netperf benchmark) was used to
obtain repeatable raw data for the various machines and
distributions tested. This benchmark script is included in
the netperf distribution available from the OpenSS7 Project
[Jon07]. A listing of this script is provided in Appendix A.

4.1 Implementations Tested

The following implementations were tested:

UDP Sockets This is the Linux NET4 Sockets implemen-
tation of UDP, described in Section ??, with normal schedul-
ing priorities. Normal scheduling priority means invoking
the sending and receiving processes without altering their
run-time scheduling priority.

UDP Sockets with artificial process priorities.

STREAMS XTIoS UDP. This is the OpenSS7
STREAMS implementation of XTI over Sockets for UDP,
described in Section 3.2.1. This implementation is tested
using normal run-time scheduling priorities.

STREAMS TPI SCTP. This is the OpenSS7
STREAMS implementation of UDP using XTI/TPI
directly, described in Section 3.2.2. This implementation is
tested using normal run-time scheduling priorities.

4.2 Distributions Tested

To remove the dependence of test results on a particular
Linux kernel or machine, various Linux distributions were
used for testing. The distributions tested are as follows:

Distribution Kernel

RedHat 7.2 2.4.20-28.7
WhiteBox 3 2.4.27
CentOS 4 2.6.9-5.0.3.EL
SuSE 10.0 OSS 2.6.13-15-default
Ubuntu 6.10 2.6.17-11-generic
Ubuntu 7.04 2.6.20-15-server
Fedora Core 6 2.6.20-1.2933.fc6

4.3 Test Machines

To remove the dependence of test results on a particular
machine, various machines were used for testing as follows:

Hostname Processor Memory Architecture

porky 2.57GHz PIV 1Gb (333MHz) i686 UP
pumbah 2.57GHz PIV 1Gb (333MHz) i686 UP
daisy 3.0GHz i630 HT 1Gb (400MHz) x86 64 SMP
mspiggy 1.7GHz PIV 1Gb (333MHz) i686 UP

5 Results

The results for the various distributions and machines is
tabulated in Appendix B. The data is tabulated as follows:

Performance. Performance is charted by graphing the num-
ber of messages sent and received per second against
the logarithm of the message send size.
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Delay. Delay is charted by graphing the number of seconds
per send and receive against the sent message size. The
delay can be modelled as a fixed overhead per send or
receive operation and a fixed overhead per byte sent.
This model results in a linear graph with the zero x-
intercept representing the fixed per-message overhead,
and the slope of the line representing the per-byte cost.
As all implementations use the same primary mecha-
nism for copying bytes to and from user space, it is
expected that the slope of each graph will be similar
and that the intercept will reflect most implementation
differences.

Throughput. Throughput is charted by graphing the loga-
rithm of the product of the number of messages per
second and the message size against the logarithm of the
message size. It is expected that these graphs will ex-
hibit strong log-log-linear (power function) characteris-
tics. Any curvature in these graphs represents through-
put saturation.

Improvement. Improvement is charted by graphing the quo-
tient of the bytes per second of the implementation and
the bytes per second of the Linux sockets implementa-
tion as a percentage against the message size. Values
over 0% represent an improvement over Linux sockets,
whereas values under 0% represent the lack of an im-
provement.

The results are organized in the sections that follow in
order of the machine tested.

5.1 Porky

Porky is a 2.57GHz Pentium IV (i686) uniprocessor machine
with 1Gb of memory. Linux distributions tested on this
machine are as follows:

Distribution Kernel

Fedora Core 6 2.6.20-1.2933.fc6
CentOS 4 2.6.9-5.0.3.EL
SuSE 10.0 OSS 2.6.13-15-default
Ubuntu 6.10 2.6.17-11-generic
Ubuntu 7.04 2.6.20-15-server

5.1.1 Fedora Core 6

Fedora Core 6 is the most recent full release Fedora distri-
bution. This distribution sports a 2.6.20-1.2933.fc6 kernel
with the latest patches. This is the x86 distribution with
recent updates.

Performance. Figure 4 plots the measured performance
of Sockets compared to XTI over Socket and XTI
approaches. STREAMS demonstrates significant im-
provements at message sizes of less than 1024 bytes.

Delay. Figure 5 plots the average message delay of UDP
Sockets compared to XTI over Socket and XTI ap-
proaches. STREAMS demonstrates significant im-
provements at message sizes of less than 1024 bytes.

From the figure, it can be seen that the slope of the
delay graph for STREAMS and Sockets are about the
same. This is expected as both implementations use the
same function to copy message bytes to and from user

space. The slope of the XTI over Sockets graph is over
twice the slope of the Sockets graph which reflects the
fact that XTI over Sockets performs multiple copies of
the data: two copies on the send side and two copies on
the receive side.

The intercept for STREAMS is lower than Sockets, in-
dicating that STREAMS has a lower per-message over-
head than Sockets, despite the fact that the destination
address is being copied to and from user space for each
message.

Throughput. Figure 6 plots the effective throughput of
UDP Sockets compared to XTI over Socket and XTI
approaches. STREAMS demonstrates significant im-
provements at all message sizes.

As can be seen from the figure, all implementations ex-
hibit strong power function characteristics (at least at
lower write sizes), indicating structure and robustness
for each implementation. The slight concave downward
curvature of the graphs at large message sizes indicates
some degree of saturation.

Improvement. Figure 7 plots the comparison of Sockets
to XTI over Socket and XTI approaches. STREAMS
demonstrates significant improvements (approx. 30%
improvement) at message sizes below 1024 bytes. Per-
haps surprising is that the XTI over Sockets approach
rivals (95%) Sockets alone at small message sizes (where
multiple copies are not controlling).

The results for Fedora Core 6 on Porky are, for the most
part, similar to the results from other distributions on the
same host and also similar to the results for other distribu-
tions on other hosts.

5.1.2 CentOS 4.0

CentOS 4.0 is a clone of the RedHat Enterprise 4 distri-
bution. This is the x86 version of the distribution. The
distribution sports a 2.6.9-5.0.3.EL kernel.

Performance. Figure 8 plots the measured performance
of Sockets compared to XTI over Socket and XTI
approaches. STREAMS demonstrates significant im-
provements at message sizes of less than 1024 bytes.

As can be seen from the figure, Linux Fast-STREAMS
outperforms Linux at all message sizes. Also, and per-
haps surprisingly, the XTI over Sockets implementation
also performs as well as Linux at lower message sizes.

Delay. Figure 9 plots the average message delay of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at
message sizes of less than 1024 bytes.

Both STREAMS and Sockets exhibit the same slope,
and XTI over Sockets exhibits over twice the slope, in-
dicating that copies of data control the per-byte char-
acteristics. STREAMS exhibits a lower intercept than
both other implementations, indicating that STREAMS
has the lowest per-message overhead, regardless of copy-
ing the destination address to and from the user with
each sent and received message.
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Figure 4: Fedora Core 6 on Porky Performance
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Figure 5: Fedora Core 6 on Porky Delay
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Figure 6: Fedora Core 6 on Porky Throughput
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Figure 7: Fedora Core 6 on Porky Comparison

Throughput. Figure 10 plots the effective throughput of
Sockets compared to XTI over Socket and XTI ap-
proaches. STREAMS demonstrates significant im-
provements at all message sizes.

As can be seen from the figure, all implementations
exhibit strong power function characteristics (at least
at lower write sizes), indicating structure and robust-
ness for each implementation. Again, the slight con-
cave downward curvature at large memory sizes indi-
cates memory bus saturation.

Improvement. Figure 11 plots the comparison of Sockets
to XTI over Socket and XTI approaches. STREAMS
demonstrates significant improvements (approx. 30-
40% improvement) at message sizes below 1024 bytes.
Perhaps surprising is that the XTI over Sockets ap-
proach rivals (97%) Sockets alone at small message sizes
(where multiple copies are not controlling).

The results for CentOS on Porky are, for the most part,
similar to the results from other distributions on the same
host and also similar to the results for other distributions on
other hosts.

5.1.3 SuSE 10.0 OSS

SuSE 10.0 OSS is the public release version of the
SuSE/Novell distribution. There have been two releases sub-
sequent to this one: the 10.1 and recent 10.2 releases. The
SuSE 10 release sports a 2.6.13 kernel and the 2.6.13-15-
default kernel was the tested kernel.

Performance. Figure 12 plots the measured performance
of Sockets compared to XTI over Socket and XTI
approaches. STREAMS demonstrates significant im-
provements at all message sizes.

Delay. Figure 13 plots the average message delay of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at
all message sizes.

Again, STREAMS and Sockets exhibit the same slope,
and XTI over Sockets more than twice the slope.
STREAMS again has a significantly lower intercept and
the XTI over Sockets and Sockets intercepts are similar,
indicating that STREAMS has a smaller per-message
overhead, despite copying destination addresses with
each message.

Throughput. Figure 14 plots the effective throughput of
Sockets compared to XTI over Socket and XTI ap-
proaches. STREAMS demonstrates significant im-
provements at all message sizes.

As can be seen from Figure 14, all implementations ex-
hibit strong power function characteristics (at least at
lower write sizes), indicating structure and robustness
for each implementation.

Improvement. Figure 15 plots the comparison of Sockets
to XTI over Socket and XTI approaches. STREAMS
demonstrates significant improvements (25-30%) at all
message sizes.
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Figure 9: CentOS on Porky Delay

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

D
at

a 
R

at
e 

(B
it

s 
p

er
 S

ec
o

n
d

)

|

Message Size (Bytes)

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx
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Figure 11: CentOS on Porky Comparison

The results for SuSE 10 OSS on Porky are, for the most
part, similar to the results from other distributions on the
same host and also similar to the results for other distribu-
tions on other hosts.

5.1.4 Ubuntu 6.10

Ubuntu 6.10 is the current release of the Ubuntu distribu-
tion. The Ubuntu 6.10 release sports a 2.6.15 kernel. The
tested distribution had current updates applied.

Performance. Figure 16 plots the measured performance
of Sockets compared to XTI over Socket and XTI ap-
proaches. STREAMS demonstrates marginal improve-
ments (approx. 5%) at all message sizes.

Delay. Figure 17 plots the average message delay of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates marginal improvements at all
message sizes.

Although STREAMS exhibits the same slope (per-byte
processing overhead) as Sockets, Ubuntu and the 2.6.17
kernel are the only combination where the STREAMS
intercept is not significantly lower than Sockets. Also,
the XTI over Sockets slope is steeper and the XTI over
Sockets intercept is much larger than Sockets alone.

Throughput. Figure 18 plots the effective throughput of
Sockets compared to XTI over Socket and XTI ap-
proaches. STREAMS demonstrates marginal improve-
ments at all message sizes.

As can be seen from Figure 18, all implementations ex-
hibit strong power function characteristics (at least at
lower write sizes), indicating structure and robustness
for each implementation.

Improvement. Figure 19 plots the comparison of Sockets
to XTI over Socket and XTI approaches. STREAMS
demonstrates marginal improvements (approx. 5%) at
all message sizes.

Unbuntu is the only distribution tested where
STREAMS does not show significant improvements
over Sockets. Nevertheless, STREAMS does show
marginal improvement (approx. 5%) over all message
sizes and performed better than Sockets at all message
sizes.

5.1.5 Ubuntu 7.04

Ubuntu 7.04 is the current release of the Ubuntu distribu-
tion. The Ubuntu 7.04 release sports a 2.6.20 kernel. The
tested distribution had current updates applied.

Performance. Figure 20 plots the measured performance
of Sockets compared to XTI over Socket and XTI
approaches. STREAMS demonstrates significant im-
provements (approx. 20-60%) at all message sizes.

Delay. Figure 21 plots the average message delay of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at
all message sizes.
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Figure 13: SuSE on Porky Delay
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Figure 14: SuSE on Porky Throughput
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Figure 15: SuSE on Porky Comparison
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Figure 16: Ubuntu 6.10 on Porky Performance
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Figure 17: Ubuntu 6.10 on Porky Delay
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Figure 18: Ubuntu 6.10 on Porky Throughput
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Figure 19: Ubuntu 6.10 on Porky Comparison
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STREAMS and Sockets exhibit the slope, and XTI over
Sockets more than twice the slope. STREAMS, how-
ever, has a significantly lower intercept and XTI over
Sockets and Sockets intercepts are similar, indicating
that STREAMS has a smaller per-message overhead,
despite copying destination addresses with each mes-
sage.

Throughput. Figure 22 plots the effective throughput of
Sockets compared to XTI over Socket and XTI ap-
proaches. STREAMS demonstrates significant im-
provements at all message sizes.

As can be seen from Figure 22, all implementations ex-
hibit strong power function characteristics (at least at
lower write sizes), indicating structure and robustness
for each implementation.

Improvement. Figure 23 plots the comparison of Sockets
to XTI over Socket and XTI approaches. STREAMS
demonstrates significant improvements (approx. 20-
60%) at all message sizes.

The results for Ubuntu 7.04 on Porky are, for the most
part, similar to the results from other distributions on the
same host and also similar to the results for other distribu-
tions on other hosts.

5.2 Pumbah

Pumbah is a 2.57GHz Pentium IV (i686) uniprocessor ma-
chine with 1Gb of memory. This machine differs from Porky
in memory type only (Pumbah has somewhat faster memory
than Porky.) Linux distributions tested on this machine are
as follows:

Distribution Kernel

RedHat 7.2 2.4.20-28.7

Pumbah is a control machine and is used to rule out dif-
ferences between recent 2.6 kernels and one of the oldest and
most stable 2.4 kernels.

5.2.1 RedHat 7.2

RedHat 7.2 is one of the oldest (and arguably the most sta-
ble) glibc2 based releases of the RedHat distribution. This
distribution sports a 2.4.20-28.7 kernel. The distribution has
all available updates applied.

Performance. Figure 24 plots the measured performance
of Sockets compared to XTI over Socket and XTI
approaches. STREAMS demonstrates significant im-
provements at all message sizes, and staggering im-
provements at large message sizes.

Delay. Figure 25 plots the average message delay of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at
all message sizes, and staggering improvements at large
message sizes.

The slope of the STREAMS delay curve is much lower
than (almost half that of) the Sockets delay curve, in-
dicating that STREAMS is exploiting some memory ef-
ficiencies not possible in the Sockets implementation.

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

M
es

sa
g

e 
R

at
e 

(M
es

sa
g

es
 p

er
 S

ec
o

n
d

)

|

Message Size (Bytes)

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

Figure 20: Ubuntu 7.04 on Porky Performance

 5e−06

 1e−05

 1.5e−05

 2e−05

 2.5e−05

 3e−05

 3.5e−05

 4e−05

 16384 8192 4096 2048

D
el

ay
 (

S
ec

o
n

d
s 

p
er

 M
es

sa
g

e)

D
el

ay

Message Size (Bytes)

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

Figure 21: Ubuntu 7.04 on Porky Delay
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Figure 22: Ubuntu 7.04 on Porky Throughput
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Figure 23: Ubuntu 7.04 on Porky Comparison
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Throughput. Figure 26 plots the effective throughput of
Sockets compared to XTI over Socket and XTI ap-
proaches. STREAMS demonstrates improvements at
all message sizes.

As can be seen from Figure 26, all implementations ex-
hibit strong power function characteristics (at least at
lower write sizes), indicating structure and robustness
for each implementation.

The Linux NET4 UDP implementation results deviate
more sharply from power function behaviour at high
message sizes. This also, is rather different that the 2.6
kernel situation. One contributing factor is the fact
that neither the send nor receive buffers can be set
above 65,536 bytes on this version of Linux 2.4 ker-
nel. Tests were performed with send and receive buffer
size requests of 131,072 bytes. Both the STREAMS
XTI over Sockets UDP implementation and the Linux
NET4 UDP implementation suffer from the maximum
buffer size, whereas, the STREAMS UDP implementa-
tion implements and permits the larger buffers.

Improvement. Figure 27 plots the comparison of Sockets
to XTI over Socket and XTI approaches. STREAMS
demonstrates significant improvements all message
sizes.

The more dramatic improvements over Linux NET4
UDP and XTI over Sockets UDP is likely due in part to
the restriction on buffer sizes in 2.4 as described above.

Unfortunately, the RedHat 7.2 system does not appear
to have acted as a very good control system. The dif-
ferences in maximum buffer size make any differences
from other tested behaviour obvious.

5.3 Daisy

Daisy is a 3.0GHz i630 (x86 64) hyper-threaded machine
with 1Gb of memory. Linux distributions tested on this
machine are as follows:

Distribution Kernel

Fedora Core 6 2.6.20-1.2933.fc6
CentOS 5.0 2.6.18-8.1.3.el5

This machine is used as an SMP control machine. Most
of the tests were performed on uniprocessor non-hyper-
threaded machines. This machine is hyper-threaded and
runs full SMP kernels. This machine also supports EMT64
and runs x86 64 kernels. It is used to rule out both SMP
differences as well as 64-bit architecture differences.

5.3.1 Fedora Core 6 (x86 64)

Fedora Core 6 is the most recent full release Fedora distri-
bution. This distribution sports a 2.6.20-1.2933.fc6 kernel
with the latest patches. This is the x86 64 distribution with
recent updates.

Performance. Figure 28 plots the measured performance
of Sockets compared to XTI over Socket and XTI
approaches. STREAMS demonstrates significant im-
provements at message sizes of less than 1024 bytes.
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Figure 25: RedHat 7.2 on Pumbah Delay
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Figure 27: RedHat 7.2 on Pumbah Comparison
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Delay. Figure 29 plots the average message delay of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at
message sizes of less than 1024 bytes.

The slope of the delay curve either indicates that Sock-
ets is using slightly larger buffers than STREAMS,
or that Sockets is somehow exploiting some per-byte
efficiencies at larger message sizes not achieved by
STREAMS. Nevertheless, the STREAMS intercept is
so low that the delay curve for STREAMS is everywhere
beneath that of Sockets.

Throughput. Figure 30 plots the effective throughput of
Sockets compared to XTI over Socket and XTI ap-
proaches. STREAMS demonstrates significant im-
provements at all message sizes.

As can be seen from Figure 30, all implementations ex-
hibit strong power function characteristics (at least at
lower write sizes), indicating structure and robustness
for each implementation.

Improvement. Figure 31 plots the comparison of Sockets
to XTI over Socket and XTI approaches. STREAMS
demonstrates significant improvements (approx. 40%
improvement) at message sizes below 1024 bytes. That
STREAMS UDP gives a 40% improvement over a wide
range of message sizes on SMP is a dramatic improve-
ment. Statements regarding STREAMS networking
running poorer on SMP than on UP are quite wrong,
at least with regard to Linux Fast-STREAMS.

5.3.2 CentOS 5.0 (x86 64)

CentOS 5.0 is the most recent full release CentOS distribu-
tion. This distribution sports a 2.6.18-8.1.3.el5 kernel with
the latest patches. This is the x86 64 distribution with re-
cent updates.

Performance. Figure 32 plots the measured performance
of Sockets compared to XTI over Socket and XTI
approaches. STREAMS demonstrates significant im-
provements at message sizes of less than 1024 bytes.

Delay. Figure 33 plots the average message delay of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at
message sizes of less than 1024 bytes.

The slope of the delay curve either indicates that Sock-
ets is using slightly larger buffers than STREAMS,
or that Sockets is somehow exploiting some per-byte
efficiencies at larger message sizes not achieved by
STREAMS. Nevertheless, the STREAMS intercept is
so low that the delay curve for STREAMS is everywhere
beneath that of Sockets.

Throughput. Figure 34 plots the effective throughput of
Sockets compared to XTI over Socket and XTI ap-
proaches. STREAMS demonstrates significant im-
provements at all message sizes.

As can be seen from Figure 34, all implementations ex-
hibit strong power function characteristics (at least at
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Figure 29: Fedora Core 6 on Daisy Delay
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Figure 30: Fedora Core 6 on Daisy Throughput
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Figure 31: Fedora Core 6 on Daisy Comparison
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lower write sizes), indicating structure and robustness
for each implementation.

Improvement. Figure 35 plots the comparison of Sockets
to XTI over Socket and XTI approaches. STREAMS
demonstrates significant improvements (approx. 40%
improvement) at message sizes below 1024 bytes. That
STREAMS UDP gives a 40% improvement over a wide
range of message sizes on SMP is a dramatic improve-
ment. Statements regarding STREAMS networking
running poorer on SMP than on UP are quite wrong,
at least with regard to Linux Fast-STREAMS.

5.4 Mspiggy

Mspiggy is a 1.7Ghz Pentium IV (M-processor) uniproces-
sor notebook (Toshiba Satellite 5100) with 1Gb of memory.
Linux distributions tested on this machine are as follows:

Distribution Kernel

SuSE 10.0 OSS 2.6.13-15-default

Note that this is the same distribution that was also tested
on Porky. The purpose of testing on this notebook is to rule
out the differences between machine architectures on the test
results. Tests performed on this machine are control tests.

5.4.1 SuSE 10.0 OSS

SuSE 10.0 OSS is the public release version of the
SuSE/Novell distribution. There have been two releases sub-
sequent to this one: the 10.1 and recent 10.2 releases. The
SuSE 10 release sports a 2.6.13 kernel and the 2.6.13-15-
default kernel was the tested kernel.

Performance. Figure 36 plots the measured performance
of Sockets compared to XTI over Socket and XTI
approaches. STREAMS demonstrates significant im-
provements at all message sizes, and staggering im-
provements at large message sizes.

Delay. Figure 37 plots the average message delay of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at
all message sizes, and staggering improvements at large
message sizes.

The slope of the STREAMS delay curve is much lower
than (almost half that of) the Sockets delay curve, in-
dicating that STREAMS is exploiting some memory ef-
ficiencies not possible in the Sockets implementation.

Throughput. Figure 38 plots the effective throughput of
Sockets compared to XTI over Socket and XTI ap-
proaches. STREAMS demonstrates improvements at
all message sizes.

As can be seen from Figure 38, all implementations ex-
hibit strong power function characteristics (at least at
lower write sizes), indicating structure and robustness
for each implementation.

The Linux NET4 UDP implementation results deviate
more sharply from power function behaviour at high
message sizes. One contributing factor is the fact that
neither the send nor receive buffers can be set above
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Figure 32: CentOS 5.0 on Daisy Performance
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Figure 33: CentOS 5.0 on Daisy Delay
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Figure 34: CentOS 5.0 on Daisy Throughput
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about 111,000 bytes on this version of Linux 2.6 kernel
running on this speed of processor. Tests were per-
formed with send and receive buffer size requests of
131,072 bytes. Both the STREAMS XTI over Sock-
ets UDP implementation and the Linux NET4 UDP
implementation suffer from the maximum buffer size,
whereas, the STREAMS UDP implementation imple-
ments and permits the larger buffers.

Improvement. Figure 39 plots the comparison of Sockets
to XTI over Socket and XTI approaches. STREAMS
demonstrates significant improvements all message
sizes.

The more dramatic improvements over Linux NET4
UDP and XTI over Sockets UDP is likely due in part to
the restriction on buffer sizes in 2.6 on slower processors
as described above.

Unfortunately, this SuSE 10.0 OSS system does not ap-
pear to have acted as a very good control system. The
differences in maximum buffer size make any differences
from other tested behaviour obvious.

6 Analysis

With some caveats as described at the end of this section,
the results are consistent enough across the various distri-
butions and machines tested to draw some conclusions re-
garding the efficiency of the implementations tested. This
section is responsible for providing an analysis of the results
and drawing conclusions consistent with the experimental
results.

6.1 Discussion

The test results reveal that the maximum throughput perfor-
mance, as tested by the netperf program, of the STREAMS
implementation of UDP is superior to that of the Linux
NET4 Sockets implementation of UDP. In fact, STREAMS
implementation performance at smaller message sizes is sig-
nificantly (as much as 30-40%) greater than that of Linux
NET4 UDP. As the common belief is that STREAMS would
exhibit poorer performance, this is perhaps a startling result
to some.

Looking at both implementations, the differences can be
described by implementation similarities and differences:

Send processing. When Linux NET4 UDP receives a
send request, the available send buffer space is checked. If
the current data would cause the send buffer fill to exceed
the send buffer maximum, either the calling process blocks
awaiting available buffer, or the system call returns with an
error (ENOBUFS). If the current send request will fit into the
send buffer, a socket buffer (skbuff) is allocated, data is
copied from user space to the buffer, and the socket buffer
is dispatched to the IP layer for transmission.

Linux 2.6 kernels have an amazing amount of special case
code that gets executed for even a simple UDP send oper-
ation. Linux 2.4 kernels are far more direct. The result is
the same, even though they are different in the depths to
which they must delve before discovering that a send is just
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Figure 37: SuSE 10.0 OSS Mspiggy Delay
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a simple send. This might explain part of the rather strik-
ing differences between the performance comparison between
STREAMS and NET4 on 2.6 and 2.4 kernels.

When the STREAMS Stream head receives a putmsg(2)
request, it checks downstream flow control. If the Stream is
flow controlled downstream, either the calling process blocks
awaiting succession of flow control, or the putmsg(2) system
call returns with an error (EAGAIN). if the Stream is not flow
controlled on the write side, message blocks are allocated to
hold the control and data portions of the request and the
message blocks are passed downstream to the driver. When
the driver receives an M DATA or M PROTO message block from
the Stream head, in its put procedure, it simply queues it
to the driver write queue with putq(9). putq(9) will result
in the enabling of the service procedure for the driver write
queue under the proper circumstances. When the service
procedure runs, messages will be dequeued from the driver
write queue transformed into IP datagrams and sent to the
IP layer for transmission on the network interface.

Linux Fast-STREAMS has a feature whereby the driver
can request that the Stream head allocate a Linux socket
buffer (skbuff) to hold the data buffer associated with an
allocated message block. The STREAMS UDP driver uti-
lizes this feature (but the STREAMS XTIoS UDP driver
cannot). STREAMS also has the feature that a write off-
set can be applied to all data block allocated and passed
downstream. The STREAMS UDP driver uses this capa-
bility also. The write offset set by the tested driver was a
maximum hard header length.

Network processing. Network processing (that is the
bottom end under the transport protocol) for both imple-
mentations is effectively the same, with only minor differ-
ences. In the STREAMS UDP implementation, no sock
structure exists, so issuing socket buffers to the network layer
is performed in a slightly more direct fashion.

Loop-back processing is identical as this is performed by
the Linux NET4 IP layer in both cases.

For Linux Sockets UDP, when the IP layer frees or orphans
the socket buffer, the amount of data associated with the
socket buffer is subtracted from the current send buffer fill.
If the current buffer fill is less than 1/2 of the maximum, all
processes blocked on write or blocked on poll are are woken.

For STREAMS UDP, when the IP layer frees or orphans
the socket buffer, the amount of data associated with the
socket buffer is subtracted from the current send buffer fill.
If the current send buffer fill is less than the send buffer low
water mark (SO SNDLOWAT or XTI SNDLOWAT), and the write
queue is blocked on flow control, the write queue is enabled.

One disadvantage that it is expected would slow
STREAMS UDP performance is the fact that on the sending
side, a STREAMS buffer is allocated along with a skbuff
and the skbuff is passed to Linux NET4 IP and the loop-
back device. For Linux Sockets UDP, the same skbuff is
reused on both sides of the interface. For STREAMS UDP,
there is (currently) no mechanism for passing through the
original STREAMS message block and a new message block
must be allocated. This results in two message block alloca-
tions per skbuff.

Receive processing. Under Linux Sockets UDP, when
a socket buffer is received from the network layer, a check
is performed whether the associated socket is locked by a
user process or not. If the associated socket is locked, the
socket buffer is placed on a backlog queue awaiting later
processing by the user process when it goes to release the
lock. A maximum number of socket buffers are permitted
to be queued against the backlog queue per socket (approx.
300).

If the socket is not locked, or if the user process is pro-
cessing a backlog before releasing the lock, the message is
processed: the receive socket buffer is checked and if the
received message would cause the buffer to exceed its max-
imum size, the message is discarded and the socket buffer
freed. If the received message fits into the buffer, its size
is added to the current send buffer fill and the message is
queued on the socket receive queue. If a process is sleeping
on read or in poll, an immediate wakeup is generated.

In the STREAMS UDP implementation on the receive
side, again there is no sock structure, so the socket locking
and backlog techniques performed by UDP at the lower layer
do not apply. When the STREAMS UDP implementation
receives a socket buffer from the network layer, it tests the
receive side of the Stream for flow control and, when not flow
controlled, allocates a STREAMS buffer using esballoc(9)
and passes the buffer directly to the upstream queue using
putnext(9). When flow control is in effect and the read queue
of the driver is not full, a STREAMS message block is still
allocated and placed on the driver read queue. When the
driver read queue is full, the received socket buffer is freed
and the contents discarded. While different in mechanism
from the socket buffer and backlog approach taken by Linux
Sockets UDP, this bottom end receive mechanism is similar
in both complexity and behaviour.

Buffering. For Linux Sockets, when a send side socket
buffer is allocated, the true size of the socket buffer is added
to the current send buffer fill. After the socket buffer has
been passed to the IP layer, and the IP layer consumes (frees
or orphans) the socket buffer, the true size of the socket
buffer is subtracted from the current send buffer fill. When
the resulting fill is less than 1/2 the send buffer maximum,
sending processes blocked on send or poll are woken up.
When a send will not fit within the maximum send buffer
size considering the size of the transmission and the current
send buffer fill, the calling process blocks or is returned an
error (ENOBUFS). Processes that are blocked or subsequently
block on poll(2) will not be woken up until the send buffer
fill drops beneath 1/2 of the maximum; however, any pro-
cess that subsequently attempts to send and has data that
will fit in the buffer will be permitted to proceed.

STREAMS networking, on the other hand, performs
queueing, flow control and scheduling on both the sender
and the receiver. Sent messages are queued before delivery
to the IP subsystem. Received messages from the IP sub-
system are queued before delivery to the receiver. Both side
implement full hysteresis high and low water marks. Queues
are deemed full when they reach the high water mark and do
not enable feeding processes or subsystems until the queue
subsides to the low water mark.
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Scheduling. Linux Sockets schedule by waking a receiving
process whenever data is available in the receive buffer to
be read, and waking a sending process whenever there is
one-half of the send buffer available to be written. While
accomplishing buffering on the receive side, full hysteresis
flow control is only performed on the sending side. Due to
the way that Linux handles the loop-back interface, the full
hysteresis flow control on the sending side is defeated.

STREAMS networking, on the other hand, uses the
queueing, flow control and scheduling mechanism of
STREAMS. When messages are delivered from the IP layer
to the receiving stream head and a receiving process is sleep-
ing, the service procedure for the reading stream head ’s read
queue is scheduled for later execution. When the STREAMS
scheduler later runs, the receiving process is awoken. When
messages are sent on the sending side they are queued in
the driver’s write queue and the service procedure for the
driver’s write queue is scheduled for later execution. When
the STREAMS scheduler later runs, the messages are deliv-
ered to the IP layer. When sending processes are blocked on
a full driver write queue, and the count drops to the low wa-
ter mark defined for the queue, the service procedure of the
sending stream head is scheduled for later execution. When
the STREAMS scheduler later runs, the sending process is
awoken.

Linux Fast-STREAMS is designed to run tasks queued
to the STREAMS scheduler on the same processor as the
queueing processor or task. This avoid unnecessary context
switches.

The STREAMS networking approach results in fewer
blocking and wakeup events being generated on both the
sending and receiving side. Because there are fewer block-
ing and wakeup events, there are fewer context switches.
The receiving process is permitted to consume more mes-
sages before the sending process is awoken; and the sending
process is permitted to generate more messages before the
reading process is awoken.

Result The result of the differences between the Linux
NET and the STREAMS approach is that better flow control
is being exerted on the sending side because of intermediate
queueing toward the IP layer. This intermediate queueing
on the sending side, not present in BSD-style networking, is
in fact responsible for reducing the number of blocking and
wakeup events on the sender, and permits the sender, when
running, to send more messages in a quantum.

On the receiving side, the STREAMS queueing, flow con-
trol and scheduling mechanisms are similar to the BSD-style
software interrupt approach. However, Linux does not use
software interrupts on loop-back (messages are passed di-
rectly to the socket with possible backlogging due to lock-
ing). The STREAMS approach is more sophisticated as it
performs backlogging, queueing and flow control simultane-
ously on the read side (at the stream head).

6.2 Caveats

The following limitations in the test results and analysis
must be considered:

6.2.1 Loop-back Interface

Tests compare performance on loop-back interface only. Sev-
eral characteristics of the loop-back interface make it some-
what different from regular network interfaces:

1. Loop-back interfaces do not require checksums.

2. Loop-back interfaces have a null hard header.

This means that there is less difference between putting
each data chunk in a single packet versus putting mul-
tiple data chunks in a packet.

3. Loop-back interfaces have negligible queueing and emis-
sion times, making RTT times negligible.

4. Loop-back interfaces do not normally drop packets.

5. Loop-back interfaces preserve the socket buffer from
sending to receiving interface.

This also provides an advantage to Sockets TCP. Be-
cause STREAMS SCTP cannot pass a message block
along with the socket buffer (socket buffers are or-
phaned before passing to the loop-back interface), a
message block must also be allocated on the receiving
side.

7 Conclusions

These experiments have shown that the Linux Fast-
STREAMS implementation of STREAMS UDP as well as
STREAMS UDP using XTIoS networking outperforms the
Linux Sockets UDP implementation by a significant amount
(up to 40% improvement).

The Linux Fast-STREAMS implementation of
STREAMS UDP networking is superior by a signif-
icant factor across all systems and kernels tested.

All of the conventional wisdom with regard to STREAMS
and STREAMS networking is undermined by these test re-
sults for Linux Fast-STREAMS.

• STREAMS is fast.

Contrary to the preconception that STREAMS must be
slower because it is more general purpose, in fact the re-
verse has been shown to be true in these experiments
for Linux Fast-STREAMS. The STREAMS flow con-
trol and scheduling mechanisms serve to adapt well and
increase both code and data cache as well as scheduler
efficiency.

• STREAMS is more flexible and more efficient.

Contrary to the preconception that STREAMS trades
flexibility or general purpose architecture for efficiency
(that is, that STREAMS is somehow less efficient be-
cause it is more flexible and general purpose), in fact
has shown to be untrue. Linux Fast-STREAMS is both
more flexible and more efficient. Indeed, the perfor-
mance gains achieved by STREAMS appear to derive
from its more sophisticated queueing, scheduling and
flow control model.
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• STREAMS better exploits parallelisms on SMP better
than other approaches.

Contrary to the preconception that STREAMS must
be slower due to complex locking and synchronization
mechanisms, Linux Fast-STREAMS performed better
on SMP (hyperthreaded) machines than on UP ma-
chines and outperformed Linux Sockets UDP by and
even more significant factor (about 40% improvement
at most message sizes). Indeed, STREAMS appears
to be able to exploit inherent parallelisms that Linux
Sockets is unable to exploit.

• STREAMS networking is fast.

Contrary to the preconception that STREAMS net-
working must be slower because STREAMS is more
general purpose and has a rich set of features, the re-
verse has been shown in these experiments for Linux
Fast-STREAMS. By utilizing STREAMS queueing,
flow control and scheduling, STREAMS UDP indeed
performs better than Linux Sockets UDP.

• STREAMS networking is neither unnecessarily complex
nor cumbersome.

Contrary to the preconception that STREAMS net-
working must be poorer because of use of a complex
yet general purpose framework has shown to be un-
true in these experiments for Linux Fast-STREAMS.
Also, the fact that STREAMS and Linux conform to
the same standard (POSIX), means that they are no
more cumbersome from a programming perspective. In-
deed a POSIX conforming application will not known
the difference between the implementation (with the ex-
ception that superior performance will be experienced
on STREAMS networking).

8 Future Work

Local Transport Loop-back

UNIX domain sockets are the advocated primary inter-
process communications mechanism in the 4.4BSD system:
4.4BSD even implements pipes using UNIX domain sockets
[MBKQ97]. Linux also implements UNIX domain sockets,
but uses the 4.1BSD/SVR3 legacy approach to pipes. XTI
has an equivalent to the UNIX domain socket. This con-
sists of connectionless, connection oriented, and connection
oriented with orderly release loop-back transport providers.
The netperf program has the ability to test UNIX domain
sockets, but does not currently have the ability to test the
XTI equivalents.

BSD claims that in 4.4BSD pipes were implemented us-
ing sockets (UNIX domain sockets) instead of using the file
system as they were in 4.1BSD [MBKQ97]. One of the rea-
sons cited for implementing pipes on Sockets and UNIX do-
main sockets using the networking subsystems was perfor-
mance. Another paper released by the OpenSS7 Project
[SS7] shows that experimental results on Linux file-system
based pipes (using the SVR3 or 4.1BSD approaches) perform
poorly when compared to STREAMS-based pipes. Because
Linux uses a similar approach to file-system based pipes in
implementation of UNIX domain sockets, it can be expected

that UNIX domain sockets under Linux will also perform
poorly when compared to loop-back transport providers un-
der STREAMS.

Sockets interface to STREAMS

There are several mechanisms to providing BSD/POSIX
Sockets interfaces to STREAMS networking [VS90] [Mar01].
The experiments in this report indicate that it could be
worthwhile to complete one of these implementations for
Linux Fast-STREAMS [Soc] and test whether STREAMS
networking using the Sockets interface is also superior to
Linux Sockets, just as it has been shown to be with the
XTI/TPI interface.

9 Related Work

A separate paper comparing the STREAMS-based pipe
implementation of Linux Fast-STREAMS to the legacy
4.1BSD/SVR3-style Linux pipe implementation has also
been prepared. That paper also shows significant perfor-
mance improvements for STREAMS attributable to similar
causes.

A separate paper comparing a STREAMS-based SCTP
implementation of Linux Fast-STREAMS to the Linux
NET4 Sockets approach has also been prepared. That pa-
per also shows significant performance improvements for
STREAMS attributable to similar causes.
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A Netperf Benchmark Script

Following is a listing of the netperf benchmark script used
to generate raw data points for analysis:

#!/bin/bash

set -x

(

sudo killall netserver

sudo netserver >/dev/null </dev/null 2>/dev/null &

sleep 3

netperf_udp_range -x /dev/udp2 \

--testtime=10 --bufsizes=131071 --end=16384 ${1+"$@"}

netperf_udp_range \

--testtime=10 --bufsizes=131071 --end=16384 ${1+"$@"}

netperf_udp_range -x /dev/udp \

--testtime=10 --bufsizes=131071 --end=16384 ${1+"$@"}

sudo killall netserver

) 2>&1 | tee ‘hostname‘.‘date -uIminutes‘.log

B Raw Data

Following are the raw data points captured using the
netperf benchmark script:

Table 1 lists the raw data from the netperf program that
was used in preparing graphs for Fedora Core 6 (i386) on
Porky.

Table 2 lists the raw data from the netperf program that
was used in preparing graphs for CentOS 4 on Porky.

Table 3 lists the raw data from the netperf program that
was used in preparing graphs for SuSE OSS 10 on Porky.

Table 4 lists the raw data from the netperf program that
was used in preparing graphs for Ubuntu 6.10 on Porky.

Table 5 lists the raw data from the netperf program that
was used in preparing graphs for RedHat 7.2 on Pumbah.

Table 6 lists the raw data from the netperf program that
was used in preparing graphs for Fedora Core 6 (x86 64) HT
on Daisy.

Table 7 lists the raw data from the netperf program that
was used in preparing graphs for SuSE 10.0 OSS on Mspiggy.

Message XTIoS XTI Sockets
Size Tx Rx Tx Rx Tx Rx

1 714927 714928 947084 947085 740775 728170
2 717371 717372 934792 934793 745202 732710
4 713453 713454 938505 938506 750541 730419
8 704000 704001 935024 935025 745011 724798

16 697051 697052 930898 930899 746454 731250
32 688597 688598 931763 931764 748286 731657
64 686784 686785 939694 939695 740980 722478

128 674447 674448 930575 930576 742196 723733
256 657051 657052 907451 907452 740007 717115
512 651677 651678 902984 902985 718341 708200

1024 619363 619364 868516 868517 712384 693917
2048 559866 559867 793259 793260 684433 674277
4096 459220 459221 706605 706606 629194 612532
8192 367311 367312 627682 627683 554245 541436

16384 249573 249574 469472 469473 446906 437599

Table 1: FC6 on Porky Raw Data

Message XTIoS XTI Sockets
Size Tx Rx Tx Rx Tx Rx

1 849555 849556 1167336 1167337 861219 860982
2 845106 845107 1171086 1171087 860981 860257
4 848669 848670 1171198 1171199 863027 862307
8 828520 828521 1158247 1158248 859350 858899

16 835946 835947 1163405 1163406 856881 856418
32 837624 837625 1145328 1145329 861550 861133
64 824114 824115 1156624 1156625 850320 849599

128 811344 811345 1160676 1160677 847531 846980
256 813958 813959 1154616 1154617 842601 841396
512 804584 804585 1164623 1164624 833461 832452

1024 767812 767813 1118676 1118677 808018 806991
2048 693760 693761 1050507 1050508 766594 765236
4096 561885 561886 920261 920262 682312 681197
8192 437609 437610 678034 678035 598846 597855

16384 268808 268809 590358 590359 478197 477303

Table 2: CentOS 4 on Porky Raw Data

Message XTIoS XTI Sockets
Size Tx Rx Tx Rx Tx Rx

1 573781 573782 713504 713505 594660 594467
2 567733 567734 720039 720040 587883 587791
4 569997 569998 729645 729646 589438 589229
8 567197 567198 734516 734517 589559 589416

16 568657 568658 686428 686429 593745 593600
32 571096 571097 689929 689930 594827 594671
64 570663 570664 705258 705259 593679 593128

128 567062 567063 706918 706919 592829 592829
256 568372 568373 716627 716628 585737 585338
512 565382 565383 675129 675130 581023 580381

1024 546251 546252 633631 633632 576955 576220
2048 510822 510823 627276 627277 556534 555734
4096 437420 437421 577926 577927 518700 517611
8192 353468 353469 528576 528577 458838 458081

16384 258953 258954 455257 455258 378575 377998

Table 3: SuSE OSS 10 on Porky Raw Data

Message XTIoS XTI Sockets
Size Tx Rx Tx Rx Tx Rx

1 529545 529546 662574 662575 615243 615243
2 529833 529834 662749 662750 615219 615219
4 529409 529410 662601 662602 614769 614769
8 526374 526375 652110 652111 614941 614941

16 527462 527463 654046 654047 614494 614494
32 525083 525084 649961 649962 614532 614532
64 524388 524389 648902 648903 613586 613586

128 521954 521955 650092 650093 612867 612867
256 508588 508589 644845 644846 598102 598102
512 505348 505349 642097 642098 595758 595758

1024 481918 481919 623680 623681 590474 590474
2048 451341 451342 600956 600957 568011 568011
4096 390587 390588 552289 552290 529874 529874
8192 304485 304486 499277 499278 466069 466069

16384 232667 232668 405488 405489 391741 391741

Table 4: Ubuntu 6.10 on Porky Raw Data
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Message XTIoS XTI Sockets
Size Tx Rx Tx Rx Tx Rx

1 1133043 1133044 1560516 1560517 1422429 1422429
2 1136533 1136534 1562461 1562462 1418493 1418493
4 1136695 1136696 1578993 1578994 1415739 1415129
8 1142312 1142313 1578110 1578111 1415738 1415129

16 1139623 1139624 1571645 1571646 1412013 1411527
32 1140659 1140660 1573956 1573957 1418429 1418429
64 1136007 1136008 1574064 1574065 1406332 1406332

128 1106231 1106232 1541064 1541065 1370828 1370828
256 1073676 1073677 1535408 1535409 1358240 1357444
512 1026932 1026933 1517692 1517693 1299434 1299434

1024 941481 941482 1455261 1455262 1211158 1211158
2048 793802 793803 1351690 1351691 1073543 1073543
4096 610252 610253 1216734 1216735 872281 872281
8192 416164 416165 1033488 1033489 644953 644953

16384 248762 248763 780198 779901 419478 419478

Table 5: RedHat 7.2 on Pumbah Raw Data

Message XTIoS XTI Sockets
Size Tx Rx Tx Rx Tx Rx

1 553383 553384 1009820 1009820 731713 731713
2 550020 550021 1005658 1005659 726596 726596
4 549600 549601 993347 993348 733634 733634
8 549073 549074 1000195 1000196 724320 724320

16 549514 549515 1000525 1000526 725440 725440
32 548447 548447 1007185 1007186 728707 728707
64 545329 545330 994739 994740 720612 720612

128 540519 540520 999002 999003 722801 722801
256 521171 521172 994474 994475 723606 723606
512 508589 508590 982028 982029 709207 709207

1024 483899 483900 951564 951565 707136 707136
2048 446004 446005 897395 897396 688775 688775
4096 387509 387510 795327 795328 650128 650128
8192 302141 302142 677573 677573 605011 605011

16384 211149 211150 505129 505130 503729 503729

Table 6: Fedora Core 6 (x86 64) HT on Daisy Raw Data

Message XTIoS XTI Sockets
Size Tx Rx Tx Rx Tx Rx

1 479564 479565 591461 591462 482975 481652
2 480678 480679 592805 592806 481606 480276
4 478366 478367 593255 593256 480746 479680
8 473615 473616 589930 589931 479021 477301

16 471973 471974 585814 585815 478449 476241
32 474980 474981 585272 585273 480508 478812
64 466618 466619 587244 587245 474745 472577

128 465623 465624 582449 582450 472031 470381
256 458158 458159 587534 587534 466018 463747
512 446356 446357 586409 586410 450769 448312

1024 421072 421073 567213 567214 435038 433157
2048 368990 368991 543818 543819 397745 395329
4096 290402 290403 500380 500381 344058 341942
8192 218918 218919 438956 438957 265907 264098

16384 137005 137006 348956 348957 192224 191737

Table 7: SuSE 10.0 OSS on Mspiggy Raw Data
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